Tìm các nghiệm của mỗi phương trình sau trong khoảng (‒π; π): sin (3x - pi/3) =1; 2cos (2x - 3pi/4) = căn 3

310

Với Giải Bài 5 trang 31 SBT Toán 11 Tập 1 trong Bài 5: Phương trình lượng giác cơ bản Sách bài tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Tìm các nghiệm của mỗi phương trình sau trong khoảng (‒π; π): sin (3x - pi/3) =1; 2cos (2x - 3pi/4) = căn 3

Bài 5 trang 31 SBT Toán 11 Tập 1Tìm các nghiệm của mỗi phương trình sau trong khoảng (‒π; π)

a)sin3xπ3=1;

b)2cos2x3π4=3;

c)tanx+π9=tan4π9.

Lời giải:

a) sin3xπ3=1

3xπ3=π2+k2π,k

x=5π18+k2π3,k

Với k = ‒1, ta có: x=5π1812π3=7π18

Với k = 0, ta có: x=5π18+02π3=5π18

Với k = 1, ta có: x=5π18+12π3=17π18

Do phương trình có nghiệm thuộc (‒π; π) nên x7π18;5π18;17π18

b)2cos2x3π4=3

cos2x3π4=32

cos2x3π4=cosπ6

2x3π4=π6+k2π,k hoặc 2x3π4=π6+k2π,k

x=11π24+kπ,k hoặc x=7π24+kπ,k

Với k = ‒1, ta có x=11π24+1π=13π24 hoặc x=7π24+1π=17π24

Với k = 0, ta có x=11π24+0π=11π24 hoặc x=7π24+0π=7π24

Với k = 1, ta có x=11π24+1π=35π24 hoặc x=7π24+π=31π24

Do phương trình có nghiệm thuộc (‒π; π) nên x17π24;13π24;7π24;11π24

c) tanx+π9=tan4π9

x+π9=4π9+kπ,k

x=π3+kπ,k

Với x = ‒1, ta có: x=π3+1π=2π3

Với x = 0, ta có: x=π3+0π=π3

Với x = ‒1, ta có: x=π3+1π=4π3

Do phương trình có nghiệm thuộc (‒π; π) nên x2π3;π3

Đánh giá

0

0 đánh giá