Top 20 Đề thi Học kì 1 Toán 10 (Chân trời sáng tạo 2023) có đáp án

Toptailieu.vn biên soạn và giới thiệu Top 20 Đề thi Học kì 1 Toán 10 (Chân trời sáng tạo 2023) có đáp án gồm các đề thi được tuyển chọn và tổng hợp từ các đề thi môn Toán THPT trên cả nước có hướng dẫn giải chi tiết giúp học sinh làm quen với các dạng đề, ôn luyện để đạt kết quả cao trong kì thi sắp tới. Mời các bạn đón xem:

Top 20 Đề thi Học kì 1 Toán 10 (Chân trời sáng tạo 2023) có đáp án

Đề thi Học kì 1 Toán 10 Chân trời sáng tạo (Có đáp án) - Đề số 01

Phòng Giáo dục và Đào tạo ...

Đề thi Học kì 1 - Chân trời sáng tạo

Năm học 2022 - 2023

Môn: Toán lớp 10

Thời gian làm bài: phút

(không kể thời gian phát đề)

(Đề số 01)

I. PHẦN TRẮC NGHIỆM (7 ĐIỂM)

Câu 1. Câu nào sau đây không là mệnh đề?

A. Bạn học giỏi quá!;

B. Tam giác đều là tam giác có ba cạnh bằng nhau;

C. 3 < 1;

D. 4 – 5 = 1.

Câu 2. Tập xác định D của hàm số fx=2x+2+xx là

A. D = [– 2; 2] \ {0};

B. D = [– 2; 2];             

C. D = (– 2; 2);                                               

D. D = ℝ.

Câu 3. Cho A = (– 1; 5] và B = (2; 7). Tập hợp A ∩ B bằng:

A. (2; 5];

B. [2; 5];

C. (2; 5);

D. [2; 5).

Câu 4. Cho tập hợp A=;m1B=1;+. Tất cả giá trị của m để AB= là

A. m ≤ 2;                         

B. m ≥  – 1;                     

C. m > 2;                          

D. m > – 2.

Câu 5. Miền nghiệm của hệ bất phương trình x+y1xy1x0 là

A. Miền tam giác;                                                   

B. Một nửa mặt phẳng;

C. Miền ngũ giác;                                                   

D. Miền tứ giác.

Câu 6. Giá trị cos113° + cos45° + cos67° bằng

A. 3;                             

B. 1;                                 

C. 22;

D. 0.

Câu 7. Cho tam giác ABC có AC = 2, BC = 5 và B^=18°. Số đo của góc A là:

A. 50°35’;

B. 51°34’;

C. 77°25’;

D. 7°6’.

Câu 8. Trong tam giác ABC, khẳng định nào sau đây đúng?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 9.  Cho hai vectơ a và b thỏa mãn a  .  b=3 và a=2,b=1. Góc giữa hai vectơ a và b bằng

A. 30°;                         

B. 90° ;                        

C. 60° ;                        

D. 45°.

Câu 10. Cho hình vuông ABCD tâm O cạnh a. Tính BO.BC ta được :

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 11. Cho a¯ = 12,096384. Số gần đúng của a¯ với độ chính xác d = 0,0004 là:

A. 12,096;

B. 12,09638;

C. 12,0964;

D. 12,10.

Câu 12. Cho hình vuông ABCD. Vectơ AB bằng vectơ nào sau đây?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 13. Cho hình thang ABCD . Mệnh đề nào dưới đây đúng?

A. Hai vectơ AB;BC cùng phương;                    

B. Hai vectơ AB;CD cùng hướng;

C. Hai vectơ AB;CD cùng phương;                    

D. Hai vectơ AB;DC ngược hướng.

Câu 14. Trong các hàm số sau, đồ thị của hàm số nhận đường thẳng x = 1 làm trục đối xứng là

A. y = – 2x2 + 4x + 1;

B. y = 2x2 + 4x + 3;

C. y = 2x2 – 2x + 1;

D. y = x2 – x + 5.

Câu 15. Cho hình bình hành ABCD . Đẳng thức vectơ nào sau đây đúng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 16. Cho tam giác ABC vuông tại A, BC=a3, M là trung điểm của BC và có AM.BC=a22. Tính cạnh AB, AC:

A. AB = a, AC = a2;

B. AB = a2, AC = a2;

C. AB = a, AC = a;

D. AB = a2, AC = a.

Câu 17. Cho số gần đúng là a = 1,2357 với độ chính xác là d = 0,01. Số quy tròn của số a là: 

A. 1,24;

B. 1,2;

C. 1,236;

D. 1.

Câu 18. Hàm số nào dưới đây là hàm nghịch biến với mọi x ∈ ℝ?

A. y = 2x + 1;                  

B. y = – |x|;

C. y = x2 + 2x;

D. y = 3x – 1.

Câu 19. Cho các hàm số: f(x) = x+1, g(x) = 12x và h(x) = x2 – x. Trong các hàm số đã cho, số hàm chẵn là:

A. 0;

B. 1;

C. 2;

D. 3.

Câu 20. Cho hàm số y = (m – 2021)x + m – 2. Điều kiện để hàm số đồng biến trên  ℝ là

A. m < 2021;                         

B. m > 2021;                          

C. 2 < m < 2021;                   

D. m ≥ 2021.

Câu 21. Cho bảng biến thiên sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đồ thị hàm số bậc hai tương ứng với bảng biến thiên trên là :

A. y = x2 + 2x – 1;        

B. y = x2 – 2x + 2;        

C. y = 2x2 – 4x + 4;      

D. y = – 3x2 + 6x – 1.

Câu 22. Cho hình chữ nhật ABCD tâm O. Gọi E, F lần lượt là trung điểm của OA và CD. Biết EF=aAB+bAD. Tính giá trị biểu thức a + b:

A. 14;                           

B. 34;                           

C. 12;                           

D. 1.

Câu 23. Giá trị ngoại lệ trong mẫu là

A. giá trị ở chính giữa trong dãy không giảm của mẫu số liệu;

B. giá trị xuất hiện nhiều nhất trong các giá trị của mẫu số liệu;

C. giá trị quá nhỏ hay quá lớn với đa số các giá trị của mẫu số liệu;

D. giá trị trung bình cộng của các giá trị của mẫu số liệu.

Câu 24. Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

A. Số trung bình cộng;

B. Trung vị;

C. Tứ phân vị;

D. Mốt.

Câu 25. Hàm số bậc hai có bảng biến thiên như hình vẽ có tọa độ điểm đỉnh là

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

A. I(– 3; 3);

B. I(0; – 3);

C. I(– 3; 0);

D. I(0; 0).

Câu 26. Cho điểm I là trung điểm của đoạn thẳng AB. Hỏi đẳng thức nào sau đây đúng?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 27.  Tìm m để hàm số y = (2m – 3)x + m + 1 đồng biến trên .

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 28. Cho hình thoi ABCD có cạnh bằng a và ABC^=60°. Độ dài AD+AB bằng

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 29. Cho hình vuông ABCD tâm O. Hỏi mệnh đề nào sau đây sai?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 30. Cho hàm số y = f(x) có bảng biến thiên như sau. Hàm số đã cho đồng biến trên khoảng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 31. Chu vi của hình chữ nhật có chiều rộng là x = 3,456 ± 0,01 và chiều dài là y = 12,732 ± 0,015 và ước lượng sai số tuyệt đối mắc phải là

A. C = 32,376 ± 0,025; ∆C ≤ 0,05;

B. C = 32,376 ± 0,05; ∆C ≤ 0,025;

C. C = 32,376 ± 0,5; ∆C ≤ 0,5;

D. C = 32,376 ± 0,05; ∆C ≤ 0,05.

Câu 32. Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một ngọn hải đăng ở vị trí C. Góc nghiêng của phương quan sát từ các vị trí A, B tới ngọn hải đăng với đường đi của người quan sát là 25° và 42°. Biết khoảng cách giữa hai vị trí A và B là 80 m. Ngọn hải đăng cách bờ biển bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

A. 116 m;

B. 78 m;

C. 104 m;

D. 86 m.

Câu 33. Kết quả điều tra số con của 30 hộ gia đình thuộc một thôn được ghi lại trong bảng sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Số trung vị của dãy số liệu trên là

A. 3;

B. 2,5;

C. 2;

D. 4.

Câu 34. Biểu đồ dưới đây thể hiện diện tích lúa cả năm của hai tỉnh An Giang và Kiên Giang từ năm 2010 đến năm 2019 (đơn vị: nghìn hecta):

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Trong khoảng từ năm 2010 đến 2013 năm mà diện tích lúa tỉnh Kiên Giang gần gấp 1,2 lần diện tích lúa của tỉnh An Giang nhất là

A. 2010;

B. 2011;

C. 2012;

D. 2013.

Câu 35. Cho tam giác ABC có các góc A^=105°,B^=45°. Tỉ số ABAC bằng

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

II. PHẦN TỰ LUẬN (3 điểm)

Bài 1 (1,0 điểm). Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải bán với giá bao nhiêu sau khi giảm giá để lợi nhuận thu được là cao nhất.

Bài 2 (1,0 điểm). Cho tam giác ABC có G là trọng tâm. Gọi D và E lần lượt là các điểm thỏa mãn đẳng thức AD=2AB,AE=xAC.

a) Phân tích vectơ AG theo hai vectơAB và AC.

b) Tìm x để ba điểm D, G, E thẳng hàng. Với giá trị tìm được của x, hãy tính tỉ số DGDE.

Bài 3 (1,0 điểm). Người ta tiến hành phỏng vấn một số người về chất lượng của một sản phẩm mới, người điều tra yêu cầu cho điểm sản phẩm (thang điểm 100) kết quả như sau:

80

65

51

58

77

12

75

58

73

79

42

62

84

56

51

82

a) Tìm phương sai và độ lệch chuẩn. Nhận xét về các kết quả nhận được.

b) Tìm giá trị bất thường.

HƯỚNG DẪN ĐÁP ÁN VÀ THANG ĐIỂM

I. PHẦN TRẮC NGHIỆM

Câu 1

A

Câu 8

A

Câu 15

B

Câu 22

D

Câu 29

D

Câu 2

A

Câu 9

A

Câu 16

A

Câu 23

C

Câu 30

B

Câu 3

A

Câu 10

B

Câu 17

B

Câu 24

D

Câu 31

D

Câu 4

C

Câu 11

C

Câu 18

D

Câu 25

C

Câu 32

B

Câu 5

A

Câu 12

C

Câu 19

A

Câu 26

D

Câu 33

C

Câu 6

C

Câu 13

C

Câu 20

B

Câu 27

D

Câu 34

D

Câu 7

A

Câu 14

A

Câu 21

C

Câu 28

B

Câu 35

B

 

Hướng dẫn chi tiết:

I. PHẦN TRẮC NGHIỆM (7 ĐIỂM)

Câu 1.

Hướng dẫn giải

Đáp án đúng là A

Câu “Bạn học giỏi quá!” là câu cảm thán không xác định được tính đúng sai nên câu này không phải mệnh đề. Do đó A đúng.

Câu 2.

Hướng dẫn giải

Đáp án đúng là A

Hàm số xác định khi và chỉ khi 2x02+x0x0x2x2x02x2,x0.

Do đó tập xác định của hàm số là: D = [– 2; 2] \ {0}.

Vậy đáp án đúng là A.

Câu 3.

Hướng dẫn giải

Đáp án đúng là A

Ta có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Khi đó A ∩ B = (2; 5].

Câu 4.

Hướng dẫn giải

Đáp án đúng là: C

Để AB= thì m – 1 > 1 ⇔ m > 2.

Câu 5.

Hướng dẫn giải

Đáp án đúng là: A

Miền nghiệm của hệ bất phương trình là miền trong tam giác không tô màu trong hình.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 6.

Hướng dẫn giải

Đáp án đúng là: C

cos113° + cos45° + cos67°

= cos(180° – 67°) + cos67° + cos45°

= – cos67° + cos67° + cos45°

= 0 + 22

22.

Câu 7.

Hướng dẫn giải

Đáp án đúng là: A

Áp dụng định lí sin trong tam giác ABC, ta được:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 8.

Hướng dẫn giải

Đáp án đúng là: A

Áp dụng định lí cosin trong tam giác ABC ta có:

a2=b2+c22bc.cosA.

Câu 9.  

Hướng dẫn giải

Đáp án đúng là: A

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 10.

Hướng dẫn giải

Đáp án đúng là: B

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 11.

Hướng dẫn giải

Đáp án đúng là C

Hàng của chữ số khác 0 đầu tiên của độ chính xác là hàng phần chục nghìn. Quy tròn số a¯ đến hàng phần chục nghìn ta được số gần đúng của a¯ là: 12,0964.

Câu 12.

Hướng dẫn giải

Đáp án đúng là: C

Vectơ DC cùng hướng với AB.

Câu 13.

Hướng dẫn giải

Đáp án đúng là: C

Hai vectơ AB;CD cùng phương nhưng  ngược hướng. Do đó C đúng và B sai.

Hai vectơ AB;DC cùng hướng. Do đó D sai.

Hai vectơ AB;BC không cùng phương. Do đó A sai.

Câu 14.

Hướng dẫn giải

Đáp án đúng là A

Ta có:

Hàm số bậc hai y = – 2x2 + 4x + 1 có a = – 2, b = 4, c = 1. Khi đó trục đối xứng là x = b2a=42.(2)=1.

Hàm số bậc hai y = 2x2 + 4x + 3 có a = 2, b = 4, c = 3. Khi đó trục đối xứng là x = b2a=42.2=1.

Hàm số bậc hai y = 2x2 – 2x + 1 có a = 2, b = – 2, c = 1. Khi đó trục đối xứng là x = b2a=22.2=12.

Hàm số bậc hai y = x2 – x + 5 có a = 1, b = –1, c = 5. Khi đó trục đối xứng là x = b2a=12.2=14.

Câu 15.

Hướng dẫn giải

Đáp án đúng là: B

Áp dụng quy tắc hình bình hành ta được: DA+DC=DB.

Câu 16.

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác ABC vuông tại A, có:

AM = 12BC =a32.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Xét tam giác ABM:

Áp dụng định lí cosin trong tam giác ABM, có:

AB2 = AM2 + BM2 – 2.AM.BM.cosAM.BC

⇔ AB2 = a322+a3222.a32.a32.13 

⇔ AB2 = a2

⇔ AB = a

Áp dụng định lí Pythagore trong tam giác ABC, ta được:

AC2 = BC2 – AB2 = 3a2 – a2 = 2a2

⇔ AC = 2a.

 Vậy AB = a và AC = 2a.

Câu 17.

Hướng dẫn giải

Đáp án đúng là B

Hàng lớn nhất của độ chính xác là hàng phần trăm thì ta cần làm tròn đến hàng phần mười. Khi đó ta có số quy tròn của số gần đúng a là 1,2.

Câu 18.

Hướng dẫn giải

Đáp án đúng là: D

Hàm số y = ax + b nghịch biến trên ℝ khi a < 0. Do đó D đúng và A sai.

Hàm số y = – |x| vừa đồng biến và nghịch biến trên ℝ.

Hàm số y = x2 + 2x vừa đồng biến và nghịch biến trên ℝ.

Câu 19.

Hướng dẫn giải

Đáp án đúng là: A

+) Xét hàm số: f(x) = x+1, có TXĐ: D = [ – 1; +∞).

Lấy x ∈ D và – x ∈ D

Khi đó f(– x) = x+1 ≠ f(x).

Do đó hàm số không chẵn cũng không lẻ.

+) Xét hàm số g(x) = 12x có TXĐ D = ℝ

Lấy x ∈ D và – x ∈ D

Khi đó: g( – x) = 12x=12x= – g(x).

Do đó hàm số đã cho là hàm lẻ.

+) Xét hàm số h(x) = x2 – x

Lấy x ∈ D và – x ∈ D

Khi đó: h( – x) = (– x)2 – (– x) = x2 + x ≠ h(x).

Do đó hàm số đã cho là hàm không chẵn cũng không lẻ.

Vậy không có hàm số nào chẵn.

Câu 20.

Hướng dẫn giải

Đáp án đúng là B

Để hàm số y = (m – 2021)x + m – 2 đồng biến trên ℝ khi m – 2021 > 0 ⇔ m > 2021.

Vậy với m > 2021 thì hàm số đồng biến trên ℝ.

Câu 21.

Hướng dẫn giải

Đáp án đúng là C

Gọi hàm số bậc hai cần tìm là: y = ax2 + bx + c (với a, b, c ∈ ℝ, a ≠ 0)

Dựa vào bảng biến thiên ta thấy a > 0 nên đáp án D sai.

Ta có: xI = b2a=1 ⇔ b = – 2a. Do đó A sai.

Ta lại có: yI = Δ4a=2⇔ ∆ = – 8a ⇔ b2 – 4ac = – 8a ⇔ 4a2 – 4ac = – 8a ⇔ a – c = – 2 ⇔ c = a + 2

+) Nếu a = 1 thì b = – 2 và c = 3. Do đó B sai.

+) Nếu a = 2 thì b = – 4 và c = 4. Do đó C đúng.

Câu 22.

Hướng dẫn giải

Đáp án đúng là D

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 23. 

Hướng dẫn giải

Đáp án đúng là: C

Giá trị ngoại lệ là giá trị quá nhỏ hoặc quá lớn so với các giá trị khác trong mẫu số liệu.

Câu 24. 

Hướng dẫn giải

Đáp án đúng là:

Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt của số liệu, kí hiệu là M0.

Câu 25. Hướng dẫn giải

Đáp án đúng là: C

Dựa vào bảng biến thiên ta có điểm đỉnh I có tọa độ I(– 3; 0).

Câu 26.

Hướng dẫn giải

Đáp án đúng là: D

Vì I là trung điểm của đoạn thẳng AB nên ta có: IA+IB=0AI=IB.

Câu 27. 

Hướng dẫn giải

Đáp án đúng là: D

Để hàm số đã cho đồng biến trên ℝ thì 2m – 3 > 0 ⇔ m > 32.

Câu 28.

Hướng dẫn giải

Đáp án đúng là B

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Xét tam giác ABC có AB = BC nên tam giác ABC cân tại B mà ABC^=60°. Do đó tam giác ABC đều

Suy ra AB = BC = AC = a.

Ta có: AD+AB=AC

AD+AB=AC=a.

Câu 29.

Hướng dẫn giải

Đáp án đúng là D

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 30.

Hướng dẫn giải

Đáp án đúng là: B

Hàm số đồng biến (đi lên) trên khoảng ;1.

Câu 31.

Hướng dẫn giải

Đáp án đúng là: D

Ta có: 3,446 ≤ x ≤ 3,466 và 12,717 ≤ y ≤ 12,747

Khi đó chu vi C = 2(x + y) của hình chữ nhật nằm trong khoảng: 32,326 ≤ C ≤  32,426

Suy ra 32,376 – 0,05 ≤ C ≤ 32,376 + 0,05 hay C = 32,376 ± 0,05.

Ta có độ chính xác là d = 0,05

Suy ra sai số tuyệt đối của C là: ∆C ≤ 0,05.

Câu 32.

Hướng dẫn giải

Đáp án đúng là: B

Kẻ CH vuông góc với bờ AB.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Xét tam giác ABC, có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Vậy khoảng cách từ ngọn hải đăng tới bờ là khoảng 78 m.

Câu 33.

Hướng dẫn giải

Đáp án đúng là: C

Ta có bảng tần số sau:

Số con (x)

0

1

2

3

4

Tần số (n)

2

4

17

5

2

 

Dựa vào bảng tần số trên ta có số trung vị của dãy số liệu là trung bình cộng của số liệu thứ 15 và số liệu thứ 16 là: Q2 = 2+22=2.

Câu 34.

Hướng dẫn giải

Đáp án đúng là: D

Năm 2010: Diện tích lúa của Kiên Giang là 640 (hecta), của An Giang là 590 (hecta). Do đó diện tích lúa của Kiên Giang gấp: 640 : 590 ≈ 1,08 (lần) diện tích lúa của An Giang.

Năm 2011: Diện tích lúa của Kiên Giang là 690 (hecta), của An Giang là 610 (hecta). Do đó diện tích lúa của Kiên Giang gấp: 690 : 610 ≈ 1,13 (lần) diện tích lúa của An Giang.

Năm 2012: Diện tích lúa của Kiên Giang là 720 (hecta), của An Giang là 620 (hecta). Do đó diện tích lúa của Kiên Giang gấp: 720 : 620 ≈ 1,16 (lần) diện tích lúa của An Giang.

Năm 2013: Diện tích lúa của Kiên Giang là 760 (hecta), của An Giang là 649 (hecta). Do đó diện tích lúa của Kiên Giang gấp: 760 : 649 ≈ 1,17 (lần) diện tích lúa của An Giang.

Câu 35.

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác ABC, có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

II. Tự luận (3 điểm)

Bài 1 (1,0 điểm).

Hướng dẫn giải

Gọi số tiền mà doanh nghiệp A dự định giảm giá là x ( triệu đồng) (0 ≤ x ≤ 4).

Tiền lãi khi bán được một xe là: 31 – x – 27 = 4 – x (triệu đồng).

Số lượng xe bán được khi đã giảm giá là: 600 + 200x (xe).

Lợi nhuận cửa hàng thu được là: (600 + 200x)(4 – x) = – 200x2 + 200x + 2 400 (triệu đồng).

Xét hàm số bậc hai y = – 200x2 + 200x + 2 400, có:

Đỉnh I có tọa độ: xI = b2a=2002.200=12; yS = Δ4a=1  960  0004.200=2  450.

Hay I12;2​​​  450

Ta có bảng biến thiên:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Dựa vào bảng biến thiên ta thấy, hàm số đạt giá trị lớn nhất là 2 450 khi x = 12.

Vậy doanh nghiệp phải bán với giá 30,5 triệu đồng để lợi nhuận thu được là cao nhất.

Bài 2 (1,0 điểm).

Hướng dẫn giải

a) Gọi M là trung điểm của BC

Xét tam giác ABC, có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Bài 3 (1,0 điểm).

Hướng dẫn giải

Ta có bảng tần số sau:

Điểm

12

42

51

56

58

62

65

73

75

77

79

80

82

84

Tần số

1

1

2

1

2

1

1

1

1

1

1

1

1

1

a) Số trung bình cộng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Độ lệch chuẩn:

S=S218.

Nhận xét: Mức độ chênh lệch giữa các điểm là khá lớn.

b) Dãy số liệu có tất cả 16 số liệu, nên số trung vị là trung bình cộng của dãy số liệu ở vị trí 8 và vị trí thứ 9 ta được: Q2=62+652=63,5.

Nửa số liệu bên trái gồm: 12; 42; 51; 51; 56; 58; 58; 62 gồm 8 giá trị. Do đó tứ phân vị thứ nhất là Q1=51+562=53,5.

Nửa số liệu bên trái gồm: 65; 73; 75; 77; 79; 80; 82; 84 gồm 8 giá trị. Do đó tứ phân vị thứ ba là Q3=77+792=78.

Suy ra khoảng tứ phân vị là: ∆Q = Q3 – Q1 = 78 – 53,5 ≈ 24,5.

Ta có: Q3 + 1,5.∆Q = 114,75 và Q1 – 1,5.∆Q = 16,75.

Ta thấy 12 < 16,75 nên 12 là giá trị ngoại lệ.

Ma trận đề kiểm tra Học kì 1 Toán 10 Chân trời sáng tạo

MÔN: TOÁN, LỚP 10 – THỜI GIAN LÀM BÀI: 90 phút

TT

Nội dung kiến
thức

Đơn vị kiến thức

Mức độ nhận thức

Tổng

%
tổng
điểm

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

Số CH

Thời
gian
(phút)

Số
CH

Thời
gian
(phút)

Số
CH

Thời
gian
(phút)

Số
CH

Thời gian

(phút)

Số
CH

Thời
gian
(phút)

TN

TL

1

1. Mệnh đề. Tập hợp

1.1. Mệnh đề

1

1

 

 

 

 

 

 

1

0

5

6

1.2. Tập hợp. Các phép toán trên tập hợp

 

 

2

4

 

 

 

 

2

0

2

2. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bất phương trình, hệ bất phương trình bậc nhất hai ẩn và ứng dụng

 

 

1

2

 

 

 

 

1

0

2

2

3

3. Hàm số bậc
hai và đồ thị

3.1. Hàm số và đồ thị

2

3

1

2

 

 

 

 

2

0

22

22

3.2. Hàm số bậc hai

2

3

1

2

 

 

1

12

3

1

4

4. Hệ thức lượng trong tam giác

4.1. Giá trị lượng giác của một góc từ 0° đến 180°

1

1

 

 

 

 

 

 

1

0

8

8

4.1. Định lí côsin và định lí sin

1

1

1

2

 

 

 

 

2

0

4.2. Giải tam giác và ứng dụng thực tế

 

 

 

 

1

4

 

 

1

0

5

5. Vectơ

5.1. Khái niệm vectơ

2

2

1

2

 

 

 

 

3

0

33

34

5.2. Tổng và hiệu của hai vectơ

1

1

2

4

 

 

 

 

3

0

5.3. Tích của vectơ với một số

2

2

1

2

 

 

1

15

3

1

5.4. Tích vô hướng của 2 vectơ

1

1

2

4

 

 

 

 

3

0

6

6. Số đúng và số gần đúng

6.1. Số gần đúng

2

2

1

2

 

 

 

 

3

0

 

 

20

 

 

28

6.2. Mô tả bằng bảng dữ liệu

2

3

 

 

 

 

 

 

2

0

6.3. Các số đặc trưng đo xu thế trung tâm

2

3

1

2

 

 

 

 

3

0

 

 

6.4. Các số đặc trưng đo độ phân tán

 

 

1

2

1

6

 

 

1

1

Tổng

 

19

23

15

30

2

10

2

27

35

3

90

 

Tỉ lệ (%)

 

 

 

 

 

70

30

 

100

Tỉ lệ chung (%)

 

 

 

 

 

 

100

 

Bảng đặc tả kĩ thuật đề kiểm tra Học kì 1 Toán 10

MÔN: TOÁN 10 – THỜI GIAN LÀM BÀI: 90 phút

TT

Nội dung
kiến thức

Đơn vị
kiến thức

Mức độ kiến thức, kĩ năng cần kiểm tra, đánh giá

Số câu hỏi theo mức độ nhận thức

Nhận
biết

Thông
hiểu

Vận
dụng

Vận dụng
cao

1

1. Mệnh
đề. Tập
hợp

1.1. Mệnh đề

Nhận biết:

– Nhận biết được thế nào là mệnh đề toán học, tính đúng/sai của các mệnh đề toán học trong trường hợp đơn giản.

1

 

 

 

1.2. Tập hợp. Các phép toán trên tập hợp

Thông hiểu

– Thực hiện được phép toán trên các tập hợp (hợp, giao, hiệu của hai tập hợp, phần bù của một tập con) và biết dùng biểu đồ Ven để biểu diễn chúng trong những trường hợp cụ thể.

 

2

 

 

2

2. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bất phương trình, hệ bất phương trình

bậc nhất hai ẩn và ứng dụng

Nhận biết:

– Nhận biết được bất phương trình và hệ bất phương trình bậc nhất hai ẩn

 

1

 

 

3

3. Hàm số bậc hai và đồ thị

3.1. Hàm số và đồ thị

Nhận biết:

– Nhận biết được những mô hình thực tế (dạng bảng, biểu đồ, công thức) dẫn đến khái

niệm hàm số.

Thông hiểu:

– Mô tả được các khái niệm cơ bản về hàm số: định nghĩa hàm số, tập xác định, tập giá

trị, hàm số đồng biến, hàm số nghịch biến, đồ thị của hàm số.

– Mô tả được các đặc trưng hình học của đồ thị hàm số đồng biến, hàm số nghịch biến.

2

1

 

 

3.2. Hàm số bậc hai

Nhận biết:

– Nhận biết được các tính chất cơ bản của Parabol như đỉnh, trục đối xứng.

Thông hiểu:

– Tính được bảng giá trị của hàm số bậc hai.

– Vẽ được Parabol (parabol) là đồ thị hàm số bậc hai.

– Nhận biết và giải thích được các tính chất của hàm số bậc hai thông qua đồ thị.

Vận dụng:

– Vận dụng được kiến thức về hàm số bậc hai và đồ thị vào giải quyết bài toán thực tiễn.

(ví dụ: xác định độ cao của cầu, cổng có hình dạng Parabol, ...).

Vận dụng cao:

- Vận dụng được kiến thức về hàm số bậc hai và đồ thị vào giải quyết các bài toán chứa tham số.

1

2

 

1

4

4. Hệ thức lượng trong tam giác

4.1. Giá trị lượng giác của một góc từ 0° đến 180°

Nhận biết:

– Nhận biết được giá trị lượng giác của một góc từ 0° đến 180°.

– Nhận biết được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau.

Thông hiểu:

– Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay.

1

 

 

 

4.2. Định lí côsin và định lí sin

Thông hiểu:

– Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng

máy tính cầm tay.

– Giải thích được các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin, công thức tính diện tích tam giác.

 

 

1

 

 

1

 

 

4.3. Giải tam giác và ứng dụng thực tế

Vận dụng:

– Mô tả được cách giải tam giác và vận dụng được vào việc giải một số bài toán có nội

dung thực tiễn (ví dụ: xác định khoảng cách giữa hai địa điểm khi gặp vật cản, xác định

chiều cao của vật khi không thể đo trực tiếp,...).

 

 

1

 

5

5. Vectơ

5.1. Khái niệm vectơ

Nhận biết:

– Nhận biết được khái niệm vectơ, vectơ bằng nhau, vectơ-không.

Thông hiểu:

– Mô tả được một số đại lượng trong thực tiễn bằng vectơ.

– Thực hiện được các phép toán trên vectơ (tổng và hiệu hai vectơ, tích của một số với vectơ, tích vô hướng của hai vectơ) và mô tả được những tính chất hình học (ba điểm thẳng hàng, trung điểm của đoạn thẳng, trọng tâm của tam giác,...) bằng vectơ.

Vận dụng:

– Sử dụng được vectơ và các phép toán trên vectơ để giải thích một số hiện tượng có liên quan đến Vật lí và Hoá học (ví dụ: những vấn đề liên quan đến lực, đến chuyển động,...).

– Vận dụng được kiến thức về vectơ để giải một số bài toán hình học và một số bài toán liên quan đến thực tiễn (ví dụ: xác định lực tác dụng lên vật,...)

Vận dụng cao:

- Tìm tập hợp các điểm thỏa mãn một đẳng thức vectơ.

2

1

 

 

5.2. Tổng và hiệu của hai vectơ

1

2

 

 

5.3. Tích của vectơ với một số

2

1

 

 

5.4. Tích vô hướng của 2 vectơ

1

2

 

1

6

6. Số đúng và số gần đúng

6.1. Số gần đúng

Nhận biết:

- Nhận biết được khái niệm số đúng, số gần đúng, độ chính xác.

- Biết được cách biểu diễn số liệu bằng bảng hoặc biểu đồ.

Thông hiểu:

- Biết cách tính các số đo xu thế trung tâm, các số đặc trưng cho độ phân tán của mẫu số liệu.

- Biết được ý nghĩa của các số đo xu thế trung tâm, các số đặc trưng đo độ phân tán được sử dụng.

2

1

 

 

6.2. Mô tả bằng bảng dữ liệu

2

 

 

 

6.3. Các số đặc trưng đo xu thế trung tâm

2

1

 

 

6.4. Các số đặc trưng đo độ phân tán

 

1

1

 

Tổng

 

19

15

2

2

Đề thi Học kì 1 Toán 10 Chân trời sáng tạo (Có đáp án) - Đề số 02

Phòng Giáo dục và Đào tạo ...

Đề thi Học kì 1 - Chân trời sáng tạo

Năm học 2022 - 2023

Môn: Toán lớp 10

Thời gian làm bài: phút

(không kể thời gian phát đề)

(Đề số 02)

I. PHẦN TRẮC NGHIỆM (7 ĐIỂM)

Câu 1: Cho định lý “Hai góc đối đỉnh thì bằng nhau”. Mệnh đề nào sau đây đúng?

A. Hai góc bằng nhau là điều kiện cần và đủ để hai góc đó đối đỉnh;

B. Hai góc đối đỉnh là điều kiện cần để hai góc đó bằng nhau;

C. Hai góc bằng nhau là điều kiện đủ để hai góc đó đối đỉnh;            

D. Hai góc đối đỉnh là điều kiện đủ để hai góc đó bằng nhau.

Câu 2: Cho tập hợp A = {x ∈ ℝ| – 1 ≤ x < 3}. Xác định phần bù của tập hợp A trong ℝ.

A. 5;+;

B. ;13;+;

C. ;1;                 

D. ;13;+.

Câu 3: Hệ nào dưới đây là hệ bất phương trình bậc nhất hai ẩn?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 4: Một bệnh viện thống kê số ca nhập viện do tai nạn giao thông mỗi ngày trong tháng 9/2020 ở bảng sau:

Số ca

0

1

2

3

4

5

6

7

8

9

12

15

Số ngày

2

3

4

6

3

2

2

3

2

1

1

1

Khoảng tứ phân vị của dãy số liệu trên là:

A. 3,5;

B. 2;

C. 5;

D. 7.

Câu 5: Cho hàm số y = x2 – 2x – 2 có đồ thị là parabol (P) và đường thẳng (d) có phương trình y = x + m. Giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B sao cho OA2 + OB2 đạt giá trị nhỏ nhất là:

A. m=52;

B. m=52;

C. m = 1;                      

D. m = 2.

Câu 6: Hà ghi lại số liệu từ trang web của Tổng cục thống kê bảng dân số Việt Nam qua các năm từ 2015 đến 2020:

Năm

Số dân

2015

92 677 076

2016

93 640, 422

2017

94 600 648

2018

95 545 962

2019

96 462 106

2020

97 338 579

Bạn Hà đã ghi nhầm dân số của năm nào?

A. 2015;

B. 2016;

C. 2019;

D. 2020.

Câu 7: Hàm số nào dưới đây là hàm số không chẵn cũng không lẻ?

A. y = – 2|x – 1|;                    

B. y = x3 – 5x;                        

C. y=x2+2;

D. y = – x.

Câu 8: Trong các hàm số sau, đồ thị của hàm số nhận đường thẳng x = 1 làm trục đối xứng là

A. y = – 2x2 + 4x + 1;

B. y = 2x2 + 4x + 3;

C. y = 2x2 – 2x + 1;

D. y = x2 – x + 5.

Câu 9: Tập xác định D của hàm số  fx=2x+2+xx là

A. D = [– 2; 2] \ {0};

B. D = [– 2; 2];             

C. D = (– 2; 2);                                               

D. D = ℝ.

Câu 10: Cho hàm số y = (m – 2021)x + m – 2. Điều kiện để hàm số đồng biến trên  ℝ là

A. m < 2021;                         

B. m > 2021;                          

C. 2 < m < 2021;                   

D. m ≥ 2021.

Câu 11: Cho tanα=13, với 0° < α < 90°. Giá trị của cosα bằng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 12: Tính giá trị biểu thức sau: sin12° + sin178° + cos106° + cos74°

A. 2sin12°;                   

B. 2cos74°;                  

C. cos74°;                    

D. sin12°.

Câu 13: Cho tam giác ABC có AB = 2, BAC^=85° và ACB^=40°. Độ dài cạnh AC là:

A. 2,55;                        

B. 3,10;                        

C. 1,57;                        

D. 1,29.

Câu 14: Cho bảng biến thiên sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đồ thị hàm số bậc hai tương ứng với bảng biến thiên trên là :

A. y = x2 + 2x – 1;        

B. y = x2 – 2x + 2;        

C. y = 2x2 – 4x + 4;      

D. y = – 3x2 + 6x – 1.

Câu 15: Phát biểu nào sau đây là sai?

A. Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.

B. Vectơ là đoạn thẳng có hướng.

C. Hai vectơ cùng hướng thì cùng phương.

D. Hai vectơ cùng phương thì cùng hướng.

Câu 16: Cho hình vuông ABCD. Hãy chọn khẳng định đúng.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 17: Cho hình vẽ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Trong các vectơ trên hình, có bao nhiêu vectơ cùng phương với vectơ MN?

A. 3;

B. 5;

C. 6;

D. 7.

Câu 18: Để lắp đường dây cao thế từ vị trí A đến vị trí B phải tránh một ngọn núi, do đó người ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 9 km, rồi nối từ vị trí C đến B dài 12km. Biết góc tạo bởi 2 đoạn dây AC và CB là 52°. Hỏi so với việc nối thẳng từ A đến B phải tốn thêm bao nhiêu mét dây?

A. 9,6; 

B. 11,4;

C. 92,0;

D. 71,0.

Câu 19: Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Chọn khẳng định đúng trong các khẳng định sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 20: Cho hình bình hành ABCD. Biểu thức DADB+DC bằng:

A. 0;                                      

B. 2DC;

C. 2DA;

D. 2DB.

Câu 21: Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ MA+MB+MC bằng:

A. 1;                                       

B. 6;                                       

C. 3;                                   

D. 3.

Câu 22: Cho a¯ = 12,096384. Số gần đúng của a¯ với độ chính xác d = 0,0004 là:

A. 12,096;

B. 12,09638;

C. 12,0964;

D. 12,10.

Câu 23: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC và CD. Đặt a=AMc=AN . Hãy phân tích vectơ AC theo 2 vectơ a và b:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 24: Cho số gần đúng là a = 1,2357 với độ chính xác là d = 0,01. Số quy tròn của số a là: 

A. 1,24;

B. 1,2;

C. 1,236;

D. 1.

Câu 25: Cho hình thoi ABCD có cạnh bằng 4. ABC^=120°. Tính AC.AD:

A. 8;

B. 16;

C. 24;

D. 32.

Câu 26: Cho hình thang vuông ABCD có  A^=D^=90°. Tính AB.AD:

A. 0;

B. 32;

C. 12;

D. 1.

Câu 27: Cho mẩu tin sau:

Trong tháng 01/2021 có 47 dự án được cấp phép mới với số vốn đăng kí đạt gần 1,3 tỉ USD, giảm khoảng 81,8% về số dự án và 70,3% về số vốn đăng kí so với cùng kì năm trước; 46 lượt dự án đã cấp phép từ các năm trước đăng kí điều chỉnh vốn đầu tư với số vốn tăng thêm trên 0,5 tỉ USD, tăng gần 41,4%.

Trong các số liệu đã cho trong bài, số số gần đúng là:

A. 2;

B. 3;

C. 4;

D. 5.

Câu 28: Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ HA+AC bằng

A. a;                                       

B. a2;                                     

C. a32;                                 

D. a3.

Câu 29: Lớp 10A có 40 học sinh. Tỉ lệ số lượng mỗi loại học lực của học sinh lớp 10A được biểu diễn bằng biểu đồ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hỏi số lượng học sinh khá của lớp 10A là:

A. 1;

B. 2;

C. 15;

D. 22.

Câu 30: Một xạ thủ bắn súng 10 lần liên tiếp, số điểm của xạ thủ đạt được được ghi lại trong bảng sau:

Số lần

Lần 1

Lần 2

Lần 3

Lần 4

Lần 5

Lần 6

Lần 7

Lần 8

Lần 9

Lần 10

Số điểm

8

6

7

6

9

8

10

7

7

8

Số trung vị của số liệu trên là:

A. 6,5;

B. 7;

C. 8;

D. 7,5.

Câu 31: Thực hiện đo chiều cao (đơn vị cm) của các bạn học sinh tổ 1 của lớp 10D và được ghi lại như sau: 154; 172; 164; 145; 160; 151; 152; 181. Chiều cao trung bình của các bạn tổ 1 là:

A. 155;

B. 160;

C. 170;

D. 150.

Câu 32: Số huy chương vàng trong các giải thể thao quốc tế mà đoàn thể thao Việt Nam trong các giải đấu ở châu Á trong các năm từ 2010 đến 2019 được thống kê trong bảng sau:

Năm

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

Số huy chương

39

43

115

52

56

62

130

82

74

120

Độ lệch chuẩn của số liệu trên là:

A. 77,3;

B. 1002,61;

C. 31,664;

D. 91.

Câu 33: Máy bay A bay với vận tốc a, máy bay B bay cùng hướng và có tốc độ chỉ bằng một nửa máy bay A. Biểu diễn vectơ vận tốc b của máy bay B theo vectơ vận tốc acủa máy bay A là:

A. b=12a;

B. b=2a;

C. b=14a;

Db=a.

Câu 34: Khoảng đồng biến và nghịch biến của hàm số y = 2x+1là:

A. (– ∞; –1) và (–1; + ∞);

B. ℝ\{– 1};

C. (– ∞; –1);

D. (–1; + ∞).

Câu 35: Tứ giác ABCD có DB=kDC+DA. Khi đó tứ giác ABCD là hình:

A. hình thang;

B. hình bình hành;

C. hình vuông;

D. hình chữ nhật.

II. PHẦN TỰ LUẬN (3 ĐIỂM)

Câu 1 (1 điểm).

Cho hình chữ nhật ABCD, M là một điểm bất kì. Chứng minh: MA+MC=MB+MD.

Câu 2 (0,5 điểm). Cho tam giác  ABC có AB=a,AC=a3  và -->BAC^=30°. Gọi I là điểm thỏa mãn IB+2IC=0. Tính độ dài đoạn thẳng AI

Câu 3 (1 điểm). Cổng chào Yên Lạc có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng (tính từ mặt đất đến điểm cao nhất của cổng).

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 4 (0,5 điểm). Nam đo được đường kính của một hình tròn là 24 ± 0,2 cm. Nam tính được chu vi đường tròn là C = 75,36. Hãy ước lượng sai số tuyệt đối của C, biết 3,141 < π < 3,142.

HƯỚNG DẪN ĐÁP ÁN VÀ THANG ĐIỂM

I. PHẦN TRẮC NGHIỆM

Câu 1

D

Câu 8

A

Câu 15

D

Câu 22

C

Câu 29

C

Câu 2

B

Câu 9

A

Câu 16

B

Câu 23

D

Câu 30

D

Câu 3

B

Câu 10

B

Câu 17

D

Câu 24

B

Câu 31

B

Câu 4

C

Câu 11

C

Câu 18

A

Câu 25

C

Câu 32

C

Câu 5

A

Câu 12

A

Câu 19

B

Câu 26

A

Câu 33

A

Câu 6

B

Câu 13

A

Câu 20

A

Câu 27

D

Câu 34

A

Câu 7

A

Câu 14

C

Câu 21

D

Câu 28

B

Câu 35

A

Hướng dẫn chi tiết:

Câu 1: Cho định lý “Hai góc đối đỉnh thì bằng nhau”. Mệnh đề nào sau đây đúng?

A. Hai góc bằng nhau là điều kiện cần và đủ để hai góc đó đối đỉnh;

B. Hai góc đối đỉnh là điều kiện cần để hai góc đó bằng nhau;

C. Hai góc bằng nhau là điều kiện đủ để hai góc đó đối đỉnh;            

D. Hai góc đối đỉnh là điều kiện đủ để hai góc đó bằng nhau.

Hướng dẫn giải

Đáp án đúng là D

Từ định lý “Hai góc đối đỉnh thì bằng nhau”, ta có thể phát biểu lại định lí này như sau:

Hai góc đối đỉnh là điều kiện đủ để hai góc đó bằng nhau. Do đó D đúng và B sai.

Hai góc bằng nhau là điều kiện cần để hai góc đó đối đỉnh. Do đó C sai.

Vì hai góc bằng nhau nhưng chưa chắc đối đỉnh do đó đáp án A là sai.

Câu 2: Cho tập hợp A = {x ∈ ℝ| – 1 ≤ x < 3}. Xác định phần bù của tập hợp A trong ℝ.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là B

Ta có: A = {x ∈ ℝ| – 1 ≤ x < 3} = [ – 1; 3)

Khi đó ℝ \ A = ℝ \ [ – 1; 3) = (– ∞; – 1) ∪ [3; + ∞).

Câu 3: Hệ nào dưới đây là hệ bất phương trình bậc nhất hai ẩn?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là B

Hệ bất phương trình bậc nhất hai ẩn là hệ gồm các bất phương trình bậc nhất hai ẩn. Do đó đáp án B là đúng.

Câu 4: Một bệnh viện thống kê số ca nhập viện do tai nạn giao thông mỗi ngày trong tháng 9/2020 ở bảng sau:

Số ca

0

1

2

3

4

5

6

7

8

9

12

15

Số ngày

2

3

4

6

3

2

2

3

2

1

1

1

Khoảng tứ phân vị của dãy số liệu trên là:

A. 3,5;

B. 2;

C. 5;

D. 7.

Hướng dẫn giải

Đáp án đúng là C

Dãy số liệu trên có 30 số liệu.

Số trung vị của dãy số liệu là số trung bình cộng của số liệu ở vị trí thứ 15 và 16: Q2 = 3+42=3,5.

Số trung vị của nửa số liệu bên trái là: Q1 = 2.

Số trung vị của nửa số liệu bên phải là: Q2 = 7.

Khoảng tứ phân vị ∆Q = Q2 – Q1 = 7 – 2 = 5.

Câu 5: Cho hàm số y = x2 – 2x – 2 có đồ thị là parabol (P) và đường thẳng (d) có phương trình y = x + m. Giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B sao cho OA2 + OB2 đạt giá trị nhỏ nhất là:

A. m=52;

B. m=52;

C. m = 1;                      

D. m = 2.

Hướng dẫn giải

Đáp án đúng là A

Xét phương trình hoành độ giao điểm:

x2 – 2x – 2 = x + m (1)

⇔ x2 – 3x – 2 – m = 0

Ta có: ∆ = (– 3)2 – 4.1.(– 2 – m) = 17 + 4m

Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B thì phương trình (1) có hai nghiệm phân biệt ⇔ ∆ = 17 + 4m > 0 ⇔ m > >174>.

Gọi x1 và x2 là nghiệm của phương trình (1).

Áp dụng định lí Vi – et ta được: x1+x2=3x1.x2=2m.

Đặt A(x1; y1) và B(x2; y2)

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Vậy OA2 + OB2 đạt giá trị nhỏ nhất bằng 272 khi m = 52.

Câu 6: Hà ghi lại số liệu từ trang web của Tổng cục thống kê bảng dân số Việt Nam qua các năm từ 2015 đến 2020:

Năm

Số dân

2015

92 677 076

2016

93 640, 422

2017

94 600 648

2018

95 545 962

2019

96 462 106

2020

97 338 579

Bạn Hà đã ghi nhầm dân số của năm nào?

A. 2015;

B. 2016;

C. 2019;

D. 2020.

Hướng dẫn giải

Đáp án đúng là B

Dân số Việt Nam năm 2016 là 93 640 422 (người). Do đó bạn Hà ghi sai số liệu năm 2016.

Câu 7: Hàm số nào dưới đây là hàm số không chẵn cũng không lẻ?

A. y = – 2|x – 1|;                    

B. y = x3 – 5x;                        

C. y=x2+2;                     

D. y = – x.

Hướng dẫn giải

Đáp án đúng là A

Tập xác định của các hàm số đã cho là D = ℝ

Lấy x ∈ D khi đó – x  ∈ D, ta có:

+) y(– x) = – 2|(– x) – 1| = – 2|x + 1| ≠ y(x).

Do đó hàm số không chẵn cũng không lẻ.

+) y(– x) = (– x)3 – 5(– x) = - x3 + 5x = - (x3 – 5x) = – y(x).

Do đó hàm số là hàm số lẻ.    

+) yx=x2+2=x2+2=y(x).

Do đó hàm số là hàm số chẵn.                               

+) y(– x) =  – (– x) = x = – y(x).

Do đó hàm số là hàm lẻ.

Câu 8: Trong các hàm số sau, đồ thị của hàm số nhận đường thẳng x = 1 làm trục đối xứng là

A. y = – 2x2 + 4x + 1;

B. y = 2x2 + 4x + 3;

C. y = 2x2 – 2x + 1;

D. y = x2 – x + 5.

Hướng dẫn giải

Đáp án đúng là A

Ta có:

Hàm số bậc hai y = – 2x2 + 4x + 1 có a = – 2, b = 4, c = 1. Khi đó trục đối xứng là x = b2a=42.(2)=1.

Hàm số bậc hai y = 2x2 + 4x + 3 có a = 2, b = 4, c = 3. Khi đó trục đối xứng là x = b2a=42.2=1.

Hàm số bậc hai y = 2x2 – 2x + 1 có a = 2, b = – 2, c = 1. Khi đó trục đối xứng là x = b2a=22.2=12.

Hàm số bậc hai y = x2 – x + 5 có a = 1, b = –1, c = 5. Khi đó trục đối xứng là x = b2a=12.2=14.

Câu 9: Tập xác định D của hàm số fx=2x+2+xx là

A. D = [– 2; 2] \ {0};

B. D = [– 2; 2];             

C. D = (– 2; 2);                                               

D. D = ℝ.

Hướng dẫn giải

Đáp án đúng là A

Hàm số xác định khi và chỉ khi 2x02+x0x0x2x2x02x2,x0.

Do đó tập xác định của hàm số là: D = [– 2; 2] \ {0}.

Vậy đáp án đúng là A.

Câu 10: Cho hàm số y = (m – 2021)x + m – 2. Điều kiện để hàm số đồng biến trên  ℝ là

A. m < 2021;                         

B. m > 2021;                          

C. 2 < m < 2021;                   

D. m ≥ 2021.

Hướng dẫn giải

Đáp án đúng là B

Để hàm số y = (m – 2021)x + m – 2 đồng biến trên ℝ khi m – 2021 > 0 ⇔ m > 2021.

Vậy với m > 2021 thì hàm số đồng biến trên ℝ.

Câu 11: Cho tanα=13, với 0° < α < 90°. Giá trị của cosα bằng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là C

Ta có: tan2α + 1 = 1cos2α

⇔ cos2α = 1tan2α+1

⇔ cos2α = 1132+1=910

⇔ cosα = 310=31010 (0° < α < 90°).

Vậy chọn đáp án C

Câu 12: Tính giá trị biểu thức sau: sin12° + sin178° + cos106° + cos74°

A. 2sin12°;                   

B. 2cos74°;                  

C. cos74°;                    

D. sin12°.

Hướng dẫn giải

Đáp án đúng là A

sin12° + sin178° + cos106° + cos74°

= sin12° + sin(180° – 12°) + cos(180° – 74°) + cos74°

= sin12° + sin12° – cos74° + cos74°

= 2.sin12°.

Câu 13: Cho tam giác ABC có AB = 2, BAC^=85° và ACB^=40°. Độ dài cạnh AC là:

A. 2,55;                        

B. 3,10;                        

C. 1,57;                        

D. 1,29.

Hướng dẫn giải

Đáp án đúng là A

Xét tam giác ABC, có: ABC^=180°85°40°=55° (định lí tổng ba góc trong tam giác)

Áp dụng định lí sin trong tam giác ABC, ta được:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 14: Cho bảng biến thiên sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đồ thị hàm số bậc hai tương ứng với bảng biến thiên trên là :

A. y = x2 + 2x – 1;        

B. y = x2 – 2x + 2;        

C. y = 2x2 – 4x + 4;      

D. y = – 3x2 + 6x – 1.

Hướng dẫn giải

Đáp án đúng là C

Gọi hàm số bậc hai cần tìm là: y = ax2 + bx + c (với a, b, c ∈ ℝ, a ≠ 0)

Dựa vào bảng biến thiên ta thấy a > 0 nên đáp án D sai.

Ta có: xI = b2a=1 ⇔ b = – 2a. Do đó A sai.

Ta lại có: yI = Δ4a=2 ⇔ ∆ = – 8a ⇔ b2 – 4ac = – 8a ⇔ 4a2 – 4ac = – 8a ⇔ a – c = – 2 ⇔ c = a + 2

+) Nếu a = 1 thì b = – 2 và c = 3. Do đó B sai.

+) Nếu a = 2 thì b = – 4 và c = 4. Do đó C đúng.

Câu 15: Phát biểu nào sau đây là sai?

A. Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.

B. Vectơ là đoạn thẳng có hướng.

C. Hai vectơ cùng hướng thì cùng phương.

D. Hai vectơ cùng phương thì cùng hướng.

Hướng dẫn giải

Đáp án đúng là D

Hai vectơ cùng phương thì có thể cùng hướng hoặc ngược hướng. Do đó D là phát biểu sai.

Câu 16: Cho hình vuông ABCD. Hãy chọn khẳng định đúng.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là B

Ta có: AB,AD là hai vectơ không cùng phương dù chúng có cùng độ dài. Suy ra ABAD. Do đó A sai.

Ta có: AC=AB+AD (quy tắc hình bình hành). Do đó B đúng.

Nếu độ dài cạnh của hình vuông là a thì AB = a và BD=a2. Suy ra ABBD. Do đó C sai.

Hai vectơ AB và CD cùng phương cùng độ dài nhưng ngược hướng. Suy ra AB=CD. Do đó D sai.

Câu 17: Cho hình vẽ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Trong các vectơ trên hình, có bao nhiêu vectơ cùng phương với vectơ MN?

A. 3;

B. 5;

C. 6;

D. 7.

Hướng dẫn giải

Đáp án đúng là D

Hai vec tơ cùng phương là hai vectơ có giá song song hoặc trùng nhau. Khi đó các vectơ cùng phương với vectơ MN là NM;  QK;  QP;  KP;  PK;  KQ;  PQ.

Vậy có tất cả 7 vectơ cùng phương với vectơ MN.

Câu 18: Để lắp đường dây cao thế từ vị trí A đến vị trí B phải tránh một ngọn núi, do đó người ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 9 km, rồi nối từ vị trí C đến B dài 12km. Biết góc tạo bởi 2 đoạn dây AC và CB là 52°. Hỏi so với việc nối thẳng từ A đến B phải tốn thêm bao nhiêu mét dây?

A. 9,6;                          

B. 11,4;                        

C. 92,0;                        

D. 71,0.

Hướng dẫn giải

Đáp án đúng là A

Áp dụng định lí cos vào tam giác ABC ta được:

AB2 = AC2 + CB2 – 2.AC.CB.cos52°

= 92 + 122 – 2.9.12.cos52°

≈ 92,0

⇔ AB ≈ 9,6 m.

So với việc nối thẳng từ A đến B phải tốn thêm số mét dây là: 9 + 12 – 9,6 ≈ 11,4 (m).

Câu 19: Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Chọn khẳng định đúng trong các khẳng định sau:

A. AB=CD;                         

B. AM=ON;

C. OC=OD;

D. AM=BN.

Hướng dẫn giải

Đáp án đúng là B

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

+) Ta có: AB và CD là hai vectơ cùng phương cùng độ dài nhưng ngược hướng. Do đó AB=CD. Suy ra A sai.

+) Xét tam giác ABC, có:

O là trung điểm của AC

N là trung điểm của BC

Suy ra ON là đường trung bình của tam giác ABC

Khi đó ON // AB và ON = 12AB = AM = MB.

Do đó AM=ON. Suy ra B đúng.

+) Ta có: OC và OD là hai vectơ có cùng độ dài nhưng không cùng hướng. Do đó OCOD. Suy ra C sai.

+) Ta có: OCOD và BN là hai vectơ không cùng độ dài và không cùng hướng. Do đó AMBN. Suy ra D sai.

Câu 20: Cho hình bình hành ABCD. Biểu thức DADB+DC bằng:

A. 0;                                      

B. 2DC;

C. 2DA;

D. 2DB.

Hướng dẫn giải

Đáp án đúng là A

Ta có: DADB+DC=BA+DC=0

Câu 21: Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ MA+MB+MC bằng:

A. 1;                                       

B. 6;                                       

C. 3;                                   

D. 3.

Hướng dẫn giải

Đáp án đúng là D

Vì ABC là tam giác đều nên O là trọng tâm tam giác ABC. Khi đó OA+OB+OC=0

Ta có: MA+MB+MC=MO+OA+MO+OB+MO+OC=3MO

MA+MB+MC=3MO

Ta lại có: M là điểm nằm trên đường tròn nên MO = 1.

MA+MB+MC=3.

Câu 22: Cho a¯ = 12,096384. Số gần đúng của a¯ với độ chính xác d = 0,0004 là:

A. 12,096;

B. 12,09638;

C. 12,0964;

D. 12,10.

Hướng dẫn giải

Đáp án đúng là C

Hàng của chữ số khác 0 đầu tiên của độ chính xác là hàng phần chục nghìn. Quy tròn số a¯ đến hàng phần chục nghìn ta được số gần đúng của a¯ là: 12,0964.

Câu 23: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC và CD. Đặt a=AMc=AN . Hãy phân tích vectơ AC theo 2 vectơ a và b:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là D

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 24: Cho số gần đúng là a = 1,2357 với độ chính xác là d = 0,01. Số quy tròn của số a là: 

A. 1,24;

B. 1,2;

C. 1,236;

D. 1.

Hướng dẫn giải

Đáp án đúng là B

Hàng lớn nhất của độ chính xác là hàng phần trăm thì ta cần làm tròn đến hàng phần mười. Khi đó ta có số quy tròn của số gần đúng a là 1,2.

Câu 25: Cho hình thoi ABCD có cạnh bằng 4. ABC^=120°. Tính AC.AD:

A. 8;

B. 16;

C. 24;

D. 32.

Hướng dẫn giải

Đáp án đúng là C

Ta có hình vẽ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Vì ABCD là hình thoi nên AC ⊥ BD tại O

⇒ ABO^=12ABC^=12.120°=60° (tính chất hình thoi)

Xét tam giác ABC vuông tại O, có:

AO = sinABO^.AB = sin60°.4 = 32.4=23.

⇒ AC = 2.AO = 2.2343.

Ta có: BAD^=60°DAC^=30°

Khi đó: AC.AD=AC.AD.cosAC;AD=43.4.cos30°=24.

Câu 26: Cho hình thang vuông ABCD có A^=D^=90°. Tính AB.AD:

A. 0;

B.32;

C. 12;

D. 1.

Câu 27: Cho mẩu tin sau:

Trong tháng 01/2021 có 47 dự án được cấp phép mới với số vốn đăng kí đạt gần 1,3 tỉ USD, giảm khoảng 81,8% về số dự án và 70,3% về số vốn đăng kí so với cùng kì năm trước; 46 lượt dự án đã cấp phép từ các năm trước đăng kí điều chỉnh vốn đầu tư với số vốn tăng thêm trên 0,5 tỉ USD, tăng gần 41,4%.

Trong các số liệu đã cho trong bài, số số gần đúng là:

A. 2;

B. 3;

C. 4;

D. 5.

Hướng dẫn giải

Đáp án đúng là D

Trong các số liệu đã cho trong bài, ta có:

- Các số đúng là: 47; 46.

- Các số gần đúng là: 1,3; 81,8%; 70,3%; 0,5; 41,4%.

Vậy có 5 số số gần đúng.

Câu 28: Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ HA+AC bằng

A. a;                                       

B. a2;                                     

C.a32;                                 

D. a3.

Hướng dẫn giải

Đáp án đúng là B

Ta có: HA+AC=HC

Khi đó  HA+AC=HC=HC=12BC=a2.

Câu 29: Lớp 10A có 40 học sinh. Tỉ lệ số lượng mỗi loại học lực của học sinh lớp 10A được biểu diễn bằng biểu đồ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hỏi số lượng học sinh khá của lớp 10A là:

A. 1;

B. 2;

C. 15;

D. 22.

Hướng dẫn giải

Đáp án đúng là C

Tỉ lệ học sinh khá trong lớp 10A là 37,5% nên số học sinh đạt học lực khá của lớp 10A là:

37,5%.40 = 15 (học sinh)

Vậy lớp 10A có 15 học sinh đạt học lực khá.

Câu 30: Một xạ thủ bắn súng 10 lần liên tiếp, số điểm của xạ thủ đạt được được ghi lại trong bảng sau:

Số lần

Lần 1

Lần 2

Lần 3

Lần 4

Lần 5

Lần 6

Lần 7

Lần 8

Lần 9

Lần 10

Số điểm

8

6

7

6

9

8

10

7

7

8

Số trung vị của số liệu trên là:

A. 6,5;

B. 7;

C. 8;

D. 7,5.

Hướng dẫn giải

Đáp án đúng là D

Sắp xếp dãy số liệu theo thứ tự không giảm ta được: 6; 6; 7; 7; 7; 8; 8; 8; 9; 10.

Dãy số liệu trên có 10 số liệu nên số trung vị là trung bình cộng của số liệu thứ 5 và 6: Q2 = 7+82=7,5.

Câu 31: Thực hiện đo chiều cao (đơn vị cm) của các bạn học sinh tổ 1 của lớp 10D và được ghi lại như sau: 154; 172; 164; 145; 160; 151; 152; 181. Chiều cao trung bình của các bạn tổ 1 là:

A. 155;

B. 160;

C. 170;

D. 150.

Hướng dẫn giải

Đáp án đúng là B

Chiều cao trung bình của tổ 1 là:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 32: Số huy chương vàng trong các giải thể thao quốc tế mà đoàn thể thao Việt Nam trong các giải đấu ở châu Á trong các năm từ 2010 đến 2019 được thống kê trong bảng sau:

Năm

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

Số huy chương

39

43

115

52

56

62

130

82

74

120

Độ lệch chuẩn của số liệu trên là:

A. 77,3;

B. 1002,61;

C. 31,664;

D. 91.

Hướng dẫn giải

Đáp án đúng là C

Số trung bình của số liệu trên là:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 33: Máy bay A bay với vận tốc a, máy bay B bay cùng hướng và có tốc độ chỉ bằng một nửa máy bay A. Biểu diễn vectơ vận tốc b của máy bay B theo vectơ vận tốc a của máy bay A là:

A. b=12a;

B. b=2a;

C. b=14a;

Db=a.

Hướng dẫn giải

Đáp án đúng là A

Vì vectơ vận tốc b của máy bay B cùng hướng theo vectơ vận tốc a của máy bay A và có độ lớn bằng một nửa vectơ a nên b=12a.

Câu 34: Khoảng đồng biến và nghịch biến của hàm số y = 2x+1là:

A. (– ∞; –1) và (–1; + ∞);

B. ℝ\{– 1};

C. (– ∞; –1);

D. (–1; + ∞).

Hướng dẫn giải

Đáp án đúng là A

Tập xác định D = ℝ\{– 1}

Lấy x1, x2 là hai số tùy ý thuộc (– ∞; –1) và (–1; + ∞) sao cho x1 < x2 ta có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

+) Nếu x1, x2 ∈ (– ∞; –1) thì x1 + 1, x2 + 1 < 0 mà x2 – x1 > 0

Suy ra 2x2x1x1+1x2+1>0 nên f(x1) > f(x2).

Do đó hàm số đã đồng biến trên (– ∞; –1).

+) Nếu x1, x2 ∈ (–1; + ∞) thì x1 + 1, x2 + 1 > 0 mà x2 – x1 > 0

Suy ra 2x2x1x1+1x2+1>0 nên f(x1) > f(x2).

Do đó hàm số đã đồng biến trên (–1; + ∞).

Vậy hàm số đồng biến trên các khoảng (– ∞; –1) và (–1; + ∞).

Câu 35: Tứ giác ABCD có DB=kDC+DA. Khi đó tứ giác ABCD là hình:

A. hình thang;

B. hình bình hành;

C. hình vuông;

D. hình chữ nhật.

Hướng dẫn giải

Đáp án đúng là A

Ta có: DB=kDC+DA

⇔ DBDA=kDC

⇔ AB=kDC

Do đó AB và CD cùng phương nên AB // CD

Vì vậy ABCD là hình thang.

II. PHẦN TỰ LUẬN (3 ĐIỂM)

Câu 1 (1 điểm).

Cho hình chữ nhật ABCD, M là một điểm bất kì. Chứng minh: MA+MC=MB+MD.

Hướng dẫn giải

Đáp án đúng là

Gọi O là giao điểm của hai đường chéo AC và BD. Khi đó O là trung điểm của AC và BD. Do đó: OA+OC=0 và OB+OD=0

Ta có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 2 (0,5 điểm). Cho tam giác ABC có AB=a,AC=a3 và BAC^=30°. Gọi I là điểm thỏa mãn IB+2IC=0. Tính độ dài đoạn thẳng AI

Hướng dẫn giải

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Xét tam giác ABC, có:

IB+2IC=0 nên I thuộc vào đoạn thẳng BC và thỏa mãn IC = 2IB.

Áp dụng định lí cos trong tam giác ABC, ta được:

BC2 = AB2 + AC2 – 2AB.AC.cosA = a2+a322.a.a3.cos30°=a2

⇒ BC = a

⇒ AB = BC = a

⇒ Tam giác ABC cân tại B

⇒ C^=A^=30°

Ta lại có IC = 2IB nên IC = 23a, IB = 13a

Xét tam giác IAC có:

Áp dụng định lí cos, ta được:

IA2 = AC2 + IC2 – 2.AC.IC.cosC^

a32+23a22.a3.23acos30°=139a2

⇔ IA = 133a.

Vậy IA = 133a.

Câu 3 (1 điểm). Cổng chào Yên Lạc có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng (tính từ mặt đất đến điểm cao nhất của cổng).

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Vì cổng có hình dạng parabol nên có phương trình y = ax2 + bx + c (a ≠ 0) (1)

Đặt hệ trục tọa độ như hình vẽ:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

 Ta có: A(– 81; 0) và B(81; 0) và M(– 71; 43)

Thay lần lượt tọa độ các điểm vào (1) ta được:

0 = a.(– 81)2 + b(– 81) + c ⇔ 6 561a – 81b + c = 0 (2)

0 = a.812 + b.81 + c ⇔ 6 561a + 81b + c = 0 (3)

43 = a.(– 71)2 + b(– 71) + c ⇔ 5 041 a – 71b + c = 43 (4)

Lấy vế với vế của phương trình (2) trừ (3) ta được: – 162b = 0 ⇔ b = 0.

Khi đó:

(2) ⇔ 6 561a + c = 0

(4) ⇔ 5 041 a + c = 43

Từ đó ta có hệ phương trình: 6  561a+c=05  041a+c=43a0,03c185,6

Suy ra ta có phương trình: y = – 0,03x2 + 185,6.

Điểm H thuộc vào trục Oy nên xH = 0 ⇒ yH = – 0,03.02 + 185,6 = 185,6.

Vì vậy chiều cao của cổng chính là đoạn OH và bằng 185,6 m.

Câu 4 (0,5 điểm). Nam đo được đường kính của một hình tròn là 24 ± 0,2 cm. Nam tính được chu vi đường tròn là C = 75,36. Hãy ước lượng sai số tuyệt đối của C, biết 3,141 < π < 3,142.

Hướng dẫn giải

Gọi d¯ và C¯ lần lượt là đường kính và chu vi của đường tròn.

Ta có: 24 – 0,2 ≤ d¯ ≤ 24 + 0,2 hay 23,8 ≤ d¯ ≤ 24,2

Suy ra 3,141.23,8 ≤ d¯.π ≤ 24,2.3,42 ⇔ 74,7558 ≤ C¯ ≤ 76,0364

⇔ 74,7558 – 75,36 ≤ C¯ – 75,36 ≤ 76,0364 – 75,36

⇔ – 0,6042 ≤ C¯ – 75,36 ≤ 0,6764.

Vậy sai số tuyệt đối của C nằm trong khoảng từ – 0,6042 đển 0,6764.

Xem thêm các đề thi Giữa học kì 1 Toán học 10 hay, chi tiết khác:

Đề thi Giữa học kì 1 Toán 10 Kết nối tri thức (Có đáp án)...

Đề thi giữa kì 1 Toán 10 Chân trời sáng tạo (Có đáp án)...

Đề thi giữa kì 1 Toán 10 Cánh diều (Có đáp án)...

Xem thêm các đề thi Học kì 1 Toán học 10 hay, chi tiết khác:

Đề thi học kì 1 Toán 10 Kết nối tri thức (Có đáp án)...

Đề thi học kì 1 Toán 10 Cánh diều (Có đáp án)...

Tài liệu có 115 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tài liệu cùng môn học

Lý thuyết Ôn tập chương 7 (Cánh Diều) Toán 7 Giang Tiêu đề (copy ở trên xuống) - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
680 47 14
Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
582 12 6
Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
659 12 9
Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
648 13 8
Tải xuống