15 câu trắc nghiệm Khái niệm véctơ (Chân trời sáng tạo) có đáp án - Toán 10

Toptailieu.vn xin giới thiệu 15 câu trắc nghiệm Khái niệm véctơ (có đáp án) chọn lọc, hay nhất giúp học sinh lớp 10 ôn luyện kiến thức để đạt kết quả cao trong các bài thi môn Toán.

Mời các bạn đón xem:

15 câu trắc nghiệm Khái niệm véctơ (có đáp án) chọn lọc

Câu 1.Nếu AB=AC thì

A. Tam giác ABC là tam giác cân;

B. Tam giác ABC là tam giác đều;

C. A là trung điểm của đoạn thẳng BC;

D. Điểm B trùng với điểm C.

Đáp án: D

AB=AC  AB = AC và hai vectơ AB  AC cùng phương.

Do đó: A, B, C là ba điểm thẳng hàng và B, C nằm cùng phía so với A.

Mà AB = AC nên B  C.

Câu 2. Cho tam giác ABC, có thể xác định được bao nhiêu vectơ khác vectơ-không có điểm đầu và điểm cuối là các đỉnh A, B, C?

A. 4;

B. 6;

C. 9;

D. 12.

Đáp án: B

Vectơ-không là vectơ có điểm đầu và điểm cuối trùng nhau.

Vectơ khác vectơ-không là vectơ có điểm đầu khác điểm cuối.

Các vectơ khác vectơ-không có điểm đầu và điểm cuối là các đỉnh A, B, C là: AB,BA,BC,CB,CA,AC.

Do đó có 6 vectơ thỏa mãn yêu cầu bài toán.

Câu 3. Cho hai vectơ không cùng phương a  b. Mệnh đề nào sau đây đúng?

A. Không có vectơ nào cùng phương với cả hai vectơ a  b;

B. Có vô số vectơ cùng phương với cả hai vectơ a  b;

C. Có một vectơ cùng phương với cả hai vectơ a  b, đó là 0;

D. Cả A, B, C đều sai.

Đáp án: C

Vì  cùng phương với mọi vectơ nên có một vectơ cùng phương với cả hai vectơ  và  đó là .

Câu 4. Cho hình lục giác đều ABCDEF tâm O. Số các vectơ khác vectơ-không, cùng phương với OB, có điểm đầu và điểm cuối đều là các đỉnh của lục giác là:

A. 4;

B. 6;

C. 8;

D. 10.

Đáp án: B

15 Bài tập Khái niệm vectơ (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

Các vectơ cùng phương với OB nếu chúng có giá song song hoặc trùng nhau.

Do đó các vectơ cùng phương với OB có điểm đầu và cuối là các đỉnh của lục giác là: BE,EB,DC,CD,FA,AF.

Do đó có 6 vectơ thỏa mãn yêu cầu bài toán.

Câu 5. Cho hình vuông ABCD, khẳng định nào sau đây là đúng?

A. AB=BC;

B. AB=CD;

C. AC=BD;

D. AD=CB.

Đáp án: D

Các cặp vectơ ở đáp án A, B, C không cùng hướng nên ta loại 3 đáp án này.

Vì ABCD là hình vuông nên AD = CB ⇔ AD=CB.

Do đó ta chọn đáp án D.

Câu 6. Cho AB và một điểm C. Có bao nhiêu điểm D thỏa mãn AB=CD

A. 1;

B. 2;

C. 0;

D. Vô số.

Đáp án: A

Có một và chỉ một điểm D thỏa mãn .

Câu 7. Hai vectơ được gọi là bằng nhau khi và chỉ khi

A. Giá của chúng trùng nhau và độ dài của chúng bằng nhau;

B. Chúng trùng với một trong các cặp cạnh đối của một hình bình hành;

C. Chúng trùng với một trong các cặp cạnh đối của một tam giác đều;

D. Chúng có cùng hướng và độ dài của chúng bằng nhau.

Đáp án: D

Hai vectơ được gọi là bằng nhau nếu chúng có cùng hướng và có cùng độ dài.

Câu 8. Cho hình bình hành ABCD với O là giao điểm của hai đường chéo. Khẳng định nào sau đây là sai?

A. AB=CD;

B. AD=BC;

C. AO=OC;

D. OD=BO.

Đáp án: A

15 Bài tập Khái niệm vectơ (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

Hai vectơ a  b được gọi là đối nhau nếu chúng ngược hướng và có cùng độ dài.

Vì ABCD là hình bình hành nên AB = CD hay AB=CD.

Mà hai vectơ AB  CD là hai vectơ ngược hướng với nhau.

Do đó AB  CD là hai vectơ đối nhau.

Vậy ta chọn đáp án A.

Câu 9. Cho ba điểm A, B, C cùng nằm trên một đường thẳng. Các vectơ AB,BC cùng hướng khi và chỉ khi

A. Điểm B thuộc đoạn AC;

B. Điểm A thuộc đoạn BC;

C. Điểm C thuộc đoạn AB;

D. Điểm B nằm ngoài đoạn AC.

Đáp án: A

15 Bài tập Khái niệm vectơ (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

Các vectơ AB,BC cùng hướng khi và chỉ khi điểm B thuộc đoạn AC.

Câu 10. Cho tam giác ABC đều cạnh 2a. Đẳng thức nào sau đây là đúng?

A. AB=AC;

B. AB=2a;

C. AB=2a;

D. AB=AB.

Đáp án: C

Vì tam giác ABC đều cạnh 2a nên .

Câu 11. Cho hình thoi ABCD tâm O, cạnh bằng a và A^=60°. Kết luận nào sau đây là đúng?

A. AO=a32;

B. OA=a;

C. OA=OB;

D. AO=a22.

Đáp án: A

15 Bài tập Khái niệm vectơ (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

Vì ABCD là hình thoi nên AB = AD.

Do đó tam giác ABD cân tại A.

Mà tam giác ABD có A^=60°.

Do đó tam giác ABD là tam giác đều.

Tam giác ABD đều cạnh bằng a có AO là đường trung tuyến (vì O là tâm của hình thoi ABCD nên O là trung điểm BD).

Suy ra AO cũng là đường cao của tam giác ABD.

Vì O là trung điểm BD nên BO = BD2=a2.

Tam giác ABO vuông tại O: AO2 = AB2 – BO2 (Định lý Pytago)

AO2=a2a22=3a24.

AO=a32.

AO=a32.

Do đó ta chọn đáp án A.

Câu 12. Cho MN0 thì số vectơ cùng phương với vectơ đã cho là

A. 1;

B. 2;

C. 3;

D. Vô số.

Đáp án: D

Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.

Giá của vectơ MN0 là đường thẳng MN, mà ta có vô số đường thẳng song song và trùng với MN.

Do đó có vô số vectơ cùng phương với MN0.

Câu 13. Cho hình chữ nhật ABCD có AB = 5cm, BC = 12cm. Độ dài của AC 

A. 4cm;

B. 6cm;

C. 8cm;

D. 13cm.

Đáp án: D

15 Bài tập Khái niệm vectơ (có đáp án) | Chân trời sáng tạo Trắc nghiệm Toán 10

Vì ABCD là hình chữ nhật nên B^=90°.

Tam giác ABC vuông tại B: AC2 = AB2 + BC2 (Định lý Pytago)

⇔ AC2 = 52 + 122 = 169.

 AC = 13 (cm).

Do đó AC=AC=13cm.

Vậy ta chọn đáp án D.

Câu 14. Mệnh đề nào sau đây là đúng?

A. Có duy nhất một vectơ cùng phương với mọi vectơ;

B. Có ít nhất hai vectơ cùng phương với mọi vectơ;

C. Có vô số vectơ cùng phương với mọi vectơ;

D. Không có vectơ nào cùng phương với mọi vectơ.

Đáp án: A

Chỉ có vectơ-không cùng phương với mọi vectơ.

Nên có duy nhất một vectơ cùng phương với mọi vectơ.

Câu 15. Mệnh đề nào sau đây sai?

A. AA=0;

B. 0 cùng hướng với mọi vectơ;

C. AB>0;

D. 0 cùng phương với mọi vectơ.

Đáp án: C

Vì có thể xảy ra trường hợp .

Tài liệu có 11 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tài liệu cùng môn học

Lý thuyết Ôn tập chương 7 (Cánh Diều) Toán 7 Giang Tiêu đề (copy ở trên xuống) - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
679 47 14
Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
582 12 6
Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
659 12 9
Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
648 13 8
Tải xuống