Bạn cần đăng nhập để đánh giá tài liệu

Quan sát đồ thị của các hàm số bậc hai trong các hình thức dưới đây

473

Với giải HĐ Khám phá 2 trang 8 Toán 10 Tập 2 Chân trời sáng tạo chi tiết trong Bài 1. Số gần đúng và sai số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Quan sát đồ thị của các hàm số bậc hai trong các hình thức dưới đây

HĐ Khám phá 2 trang 8 Toán 10 Tập 2: Quan sát đồ thị của các hàm số bậc hai trong các hình thức dưới đây. Trong mỗi trường hợp, hãy cho biết:

+) Các nghiệm (nếu có) và dấu của biệt thức Δ

+) Các khoảng giá trị của xmà trên đó f(x) cùng dấu với hệ số của x2

HĐ Khám phá 2 trang 8 Toán 10 Tập 2 Chân trời sáng tạo (ảnh 1)

Phương pháp giải:

Bước 1: Xác định nghiệm của hàm số là giao của đồ thị và trục hoành

Bước 2: Xác định biệt thức Δ=b24ac và xác định dấu của nó

Bước 3: Dựa vào đồ thị xác định dấu của f(x)

          +) Phần đồ thị nằm trên trục hoành là f(x)>0

          +) Phần đồ thị nằm dưới trục hoành là f(x)<0

Lời giải 

a) Dựa vào đồ thị ta thấy hàm số đã cho vô nghiệm

          Biệt thức Δ=224.(1).(2)=4<0

          Ta thấy hệ số của x2 là 1<0

          Đồ thị nằm dưới trục hoành với mọi x

Nên f(x) cùng dấu với hệ số của x2 với xR

b) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép x1=x2=1

Biệt thức Δ=224.(1).(1)=0

          Ta thấy hệ số của x2 là 1<0

          Đồ thị nằm dưới trục hoành với mọi x

Nên f(x) cùng dấu với hệ số của x2 với xR

c) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  x1=1;x2=3

Biệt thức Δ=224.(1).3=16>0

          Ta thấy hệ số của x2 là 1<0

Đồ thị nằm dưới trục hoành khi  x(,1)(3,+)

Đồ thị nằm trên trục hoành với mọi x(1,3)

Nên f(x) cùng dấu với hệ số của x2 khi x(,1)(3,+)

d) Dựa vào đồ thị ta thấy hàm số bậc hai đã cho vô nghiệm

Biệt thức Δ=624.1.10=4<0

          Ta thấy hệ số của x2 là 1>0

Đồ thị nằm trên trục hoành với mọi x

Nên f(x) cùng dấu với hệ số của x2 với mọi xR

e) Dựa vào đồ thị ta thấy hàm số đã cho có nghiệm kép x1=x2=3

Biệt thức Δ=624.1.9=0

          Ta thấy hệ số của x2 là 1>0

          Đồ thị nằm trên trục hoành với mọi x

Nên f(x) cùng dấu với hệ số của x2 với mọi xR

g) ) Dựa vào đồ thị ta thấy hàm số đã cho có hai nghiệm phân biệt  x1=4;x2=2

Biệt thức Δ=624.1.8=4>0

          Ta thấy hệ số của x2 là 1>0

Đồ thị nằm trên trục hoành khi  x(,4)(2,+)

Đồ thị nằm dưới trục hoành với mọi x(4,2)

Nên f(x) cùng dấu với hệ số của x2 khi x(,4)(2,+)

Xem thêm các bài giải Toán 10 Chân trời sáng tạo hay, chi tiết khác:

HĐ Khám phá 1 trang 6 Toán 10 Tập 2: Đồ thị của hàm số y=f(x)=x2+x+3được biểu diễn trong hình 1...

Thực hành 1 trang 7 Toán 10 Tập 2: Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x=1...

Thực hành 2 trang 7 Toán 10 Tập 2Tìm biệt thức và nghiệm của các tam thức bậc hai sau...

Thực hành 3 trang 9 Toán 10 Tập 2: Xét dấu của các tam thức bậc hai sau...

Vận dụng trang 9 Toán 10 Tập 2: Xét dấu tam thức bậc hai h(x)=0,006x2+1,2x30 trong bài toán khởi động và cho biết ở khoảng cách nào tính từ đầu cầu O thì vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu...

Bài 1 trang 9 Toán 10 Tập 2: Đa thức nào sau đây là tam thức bậc hai?...

Bài 2 trang 9 Toán 10 Tập 2: Xác định giá trị của  để các đa thức sau là tam thức bậc hai...

Bài 3 trang 10 Toán 10 Tập 2: Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức bậc hai tương ứng...

Bài 4 trang 10 Toán 10 Tập 2: Xét dấu của các tam thức bậc hai sau đây...

Bài 5 trang 10 Toán 10 Tập 2: Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được mét theo phương ngang được mô phỏng bằng hàm số h(x)=0,1x2+x1. Trong các khoảng nào của thì bóng nằm: cao hơn vành rổ, thấp hơn vành rổ và ngang vành rổ? Làm tròn các kết quả đến hàng phần mười...

Đánh giá

0

0 đánh giá