Cho tam giác ABC và các điểm M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng ∆ABC ᔕ ∆MNP

249

Với giải Bài 9.16 trang 55 SBT Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài 34: Ba trường hợp đồng dạng của hai tam giác dạng giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho tam giác ABC và các điểm M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng ∆ABC ᔕ ∆MNP

Bài 9.16 trang 55 SBT Toán lớp 8 Tập 2: Cho tam giác ABC và các điểm M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Chứng minh rằng ∆ABC ᔕ ∆MNP và tìm tỉ số đồng dạng.

Lời giải:

Cho tam giác ABC và điểm O nằm trong tam giác. Lấy M, N, P là các điểm lần lượt

Tam giác ABC có:

M, N lần lượt là trung điểm của BC, CA

Nên MN là đường trung bình của tam giác ABC.

Do đó, MN // AB và ABMN=2 .

Chứng minh tương tự ta có:BCPN=2ACPM=2 .

Tam giác ABC và tam giác MNP có:

ABMN=BCPN=ACPM(= 2).

Nên ∆ABC ᔕ ∆MNP (c.c.c) theo tỉ số đồng dạng là 2.

Đánh giá

0

0 đánh giá