Bài 1.43 trang 44 Toán 12 Tập 1 | Kết nối tri thức Giải Toán lớp 12

136

Với giải Bài 1.43 trang 44 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài tập cuối chương 1 trang 42 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Bài 1.43 trang 44 Toán 12 Tập 1 | Kết nối tri thức Giải Toán lớp 12

Bài 1.43 trang 44 SGK Toán 12 Tập 1: Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

a) y=x3+6x29x+12;
b) y=2x1x+1;
c) y=x22xx1.

Lời giải:

a) 1. Tập xác định: D=R

2. Sự biến thiên:

Ta có:y=3x2+12x9,y=03x2+12x9=0[x=1x=3

Trên khoảng (1;3)y>0 nên hàm số đồng biến. Trên khoảng (;1) và (3;+)y<0 nên hàm số nghịch biến trên mỗi khoảng đó.

Hàm số đạt cực đại tại x=3, giá trị cực đại . Hàm số đạt cực tiểu tại x=1, giá trị cực tiểu yCT=8

Giới hạn tại vô cực:limxy=limx(x3+6x29x+12)=limx[x3(1+6x9x2+12x3)]=+

limx+y=limx+(x3+6x29x+12)=limx+[x3(1+6x9x2+12x3)]=

Bảng biến thiên:

3. Đồ thị:

Giao điểm của đồ thị hàm số y=x3+6x29x+12 với trục tung là (0; 12).

Đồ thị hàm số y=x3+6x29x+12 đi qua các điểm (1; 8); (3; 12); (4; 8).

Đồ thị hàm số có tâm đối xứng là điểm (2; 10).

b) 1. Tập xác định của hàm số: R{1}

2. Sự biến thiên:

y=3(x+1)2>0x1

Hàm số đồng biến trên khoảng (;1) và (1;+).

Hàm số không có cực trị.

Giới hạn: limx+y=limx+2x1x+1=2;limxy=limx2x1x+1=2
limx1y=limx12x1x+1=+;limx1+y=limx1+2x1x+1=

Do đó, đồ thị hàm số nhận đường thẳng x=1 làm tiệm cận đứng và đường thẳng y=2 làm tiệm cận ngang.

Bảng biến thiên:

3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là (0;1).

y=02x1x+1=0x=12

Giao điểm của đồ thị hàm số với trục hoành là điểm (12;0).

Đồ thị hàm số nhận giao điểm I(-1; 2) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

 

c) 1. Tập xác định của hàm số: R{1}

2. Sự biến thiên:

Ta có: y=x22xx1=x11x1

y=(2x2)(x1)(x22x)(x1)2=x22x+2(x1)2=(x1)2+1(x1)2>0x1

Do đó, hàm số đồng biến trong khoảng (;1) và (1;+).

Hàm số không có cực trị.

Giới hạn: limx+y=limx+x22xx1=+;limxy=limxx22xx1=
limx1y=limx1x22xx1=+;limx1+y=limx1+x22xx1=

limx+[y(x1)]=limx+(x11x1(x1))=limx+1x1=0

limx[y(x1)]=limx(x11x1(x1))=limx1x1=0

Do đó, đồ thị hàm số nhận đường thẳng x=1 làm tiệm cận đứng và đường thẳng y=x1 làm tiệm cận xiên.

Bảng biến thiên:

3. Đồ thị:

Giao điểm của đồ thị hàm số với trục tung là (0; 0).

y=0x22xx1=0x=0 hoặc x=2

Đồ thị hàm số giao với trục hoành tại các điểm (0; 0) và (2; 0)

Đồ thị hàm số nhận giao điểm I(1; 0) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

Đánh giá

0

0 đánh giá