SBT Toán 10 Kết nối tri thức trang 18 Bài 17: Dấu của tam thức bậc hai

362

Với giải Câu hỏi trang 18 SBT Toán 10 Tập 2 Kết nối tri thức trong Bài 17: Dấu của tam thức bậc hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem: 

SBT Toán 10 Kết nối tri thức trang 18 Bài 17: Dấu của tam thức bậc hai

Bài 6.21 trang 18 sách bài tập Toán 10: Xét dấu các tam thức bậc hai sau:

a) f(x)=x2+6x+7     

b) g(x)=3x22x+2

c) h(x)=16x2+24x9

d) k(x)=2x26x+1

Lời giải:

a) f(x)=x2+6x+7 có ∆’ = 16 > 0, a = -1 < 0 và có 2 nghiệm phân biệt x1=1x2=7

Do đó ta có bảng xét dấu f(x):

 

Suy ra f(x)>0với mọi x(1;7) và f(x)<0 với mọi x(;1)(7;+)

b) g(x)=3x22x+2 có ∆’ = -5 < 0 và a = 3 > 0 nên g(x) > 0 với mọi xR

c) h(x)=16x2+24x9 có ∆’ = 0 và a = -16 < 0 nên h(x) có nghiệm kép x=34 và h(x)<0 với mọi x34

d) k(x)=2x26x+1 có ∆’ = 7 > 0, a = 2 > 0 và có 2 nghiệm phân biệt x1=372;x2=3+72

Do đó ta có bảng xét dấu k(x):

 

Suy ra k(x) > 0 với mọi x(;372)(3+72;+) và k(x) < 0 với mọi x(372;3+72)

Bài 6.22 trang 18 sách bài tập Toán 10: Giải các bất phương trình sau:

a) 3x236x+108>0   

b) x2+2x20

c) x43x2+20   

d) 1x2x+112x2+x+2 

Lời giải:

a) Tam thức bậc hai f(x)=3x236x+108 có a = 3 > 0, ∆’ = 0 nên f(x) có nghiệm kép x = 6 và f(x) = 3x236x+108 > 0 với mọi x6

Vậy tập nghiệm của BPT 3x236x+108>0 là R{6}

b) Tam thức bậc hai g(x)=x2+2x20 có a = -1 < 0, ∆’ = -1 < 0 nên g(x) < 0 với mọi xR

Vậy BPT x2+2x20 vô nghiệm

c) Đặt x2 (t ≥ 0) khi đó ta thu được BPT t23t+20

Tam thức bậc hai h(x)=t23t+2 có a = 1 > 0 và có hai nghiệm là x1=1,x2=2 nên ta có bảng xét dấu:

 

Từ bảng xét dấu, ta được nghiệm của BPT t23t+20là 1 ≤ t ≤ 2

Suy ra 1 ≤ x2 ≤ 2 {x21x22{[x1x12x2[2x11x2

Vậy tập nghiệm của BPT x43x2+20 là [2;1][1;2]

d) 1x2x+112x2+x+2(*)

Ta có: Tam thức bậc hai x2x+1 và 2x2+x+2 đều có a > 0, ∆ > 0 nên x2x+1 > 0; 2x2+x+2 > 0 với mọi xR

Khi đó (*) x2x+12x2+x+2 x2+2x+10

Tam thức bậc hai k(x)=x2+2x+1 có a = 1 > 0, ∆’ = 0 và có nghiệm kép x = -1

Suy ra k(x) > 0 với mọi x ≠ -1 và k(x) = 0 với x = -1

Vậy tập nghiệm của BPT 1x2x+112x2+x+2 là {-1}

Bài 6.23 trang 18 sách bài tập Toán 10: Tìm các giá trị của tham số m để phương trình x2−2(m−1)x+4m2−m=0 (1)

a) Có hai nghiệm phân biệt

b) Có hai nghiệm trái dấu

Lời giải:

Tam thức bậc hai x22(m1)x+4m2m=0 có ∆’ = (m1)24m2+m=3m2m+1

a) PT (1) có hai nghiệm phân biệt khi và chỉ khi ∆’ > 0 3m2m+1>0 1136<m<1+136

Vậy với m(1136;1+136) thì PT (1) có hai nghiệm phân biệt.

b) PT (1) có hai nghiệm trái dấu khi và chỉ khi ac < 0 4m2m<00<m<14

Vậy với m(0;14) thì PT (1) có hai nghiệm trái dấu.

Bài 6.24 trang 18 sách bài tập Toán 10: Tìm các giá trị của tham số m để:

a) −x2 + (m+1)x − 2m + 1 ≤ 0, ∀x∈R

b) x2− (2m+1)x + m + 2 > 0, ∀x∈R

Lời giải:

a) Tam thức bậc hai x2+(m+1)x2m+10 có ∆ = (m+1)2+4(2m+1)=m26m+5

Vì a = -1 < 0 nên x2+(m+1)x2m+10,xR khi và chỉ khi ∆ ≤ 0

Ta có: ∆ ≤ 0 m26m+501m5

Vậy với m[1;5] thì x2+(m+1)x2m+10,xR

b) Tam thức bậc hai x2(2m+1)x+m+2>0 có ∆ = (2m+1)24(m+2)=4m27

Vì a = 1 > 0 nên x2(2m+1)x+m+2>0,xR khi và chỉ khi ∆ < 0

Ta có: ∆ < 0 4m27<072<m<72

Vậy với m(72;72) thì x2(2m+1)x+m+2>0,xR

Bài 6.25 trang 18 sách bài tập Toán 10: Một công ti đồ gia dụng sản xuất bình đựng nước thấy rằng khi đơn giá của bình đựng nước là x nghìn đồng thì doanh thu R (tính theo đơn vị nghìn đồng) sẽ là R(x) = −560x2 + 50000x

a) Theo mô hình doanh thu này, thì đơn giá nào là quá cao dẫn đến doanh thu từ việc bán bình đựng nước bằng 0 (tức là sẽ không có người mua)?

b) Với khoảng đơn giá nào của bình đựng nước thì doanh thu từ việc bán bình đựng nước vượt mức 1 tỉ đồng?

Lời giải:

a) Ta có: R(x)=0560x2+50000x=0[x=6257x=0 x89

Vậy với đơn giá khoảng 89 nghìn đồng thì không có doanh thu bán bình đựng nước.

b) Ta có:

R(x)>1000000560x2+50000x>10000007x2625x+12500<030,25<x<59,04

Vậy với đơn giá từ khoảng 31 nghìn đồng đến 59 nghìn đồng thì doanh thu bán bình đựng nước vượt mức 1 tỉ đồng.

Bài 6.26 trang 18 sách bài tập Toán 10: Một viên đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu 500 m/s, hợp với phương ngang một góc bằng 450. Biết rằng khi bỏ qua sức cản của không khí, quỹ đạo chuyển động của một vật ném xiên sẽ tuân theo phương trình: y=g2v02cos2αx2+xtanα 

Trong đó x là khoảng cách (tính bằng mét) vật bay được theo phương ngang, vận tốc ban đầu v0 của vật hợp với phương ngang một góc α và g = 9,8 m/s2 là gia tốc trọng trường.

a) Viết phương trình chuyển động của viên đạn

b) Để viên đạn bay qua một ngọn núi cao 4 000 mét thì khẩu pháp phải đặt cách chân núi một khoảng bao xa?

Lời giải:

a) Ta có: y=g2v02cos2αx2+xtanα=9,82.5002.cos2450x2+x.tan450=9,8250000x2+x

b) Ta có: y > 4 000

          9,8250000x2+x>40009,8x2250000x+1000000000<04967,17<x<20543,03

Vậy để viên đạn bay qua một ngọn núi cao 4 000 mét thì khẩu pháo phải đặt cách chân núi một khoảng từ 4967 mét đến 20543 mét

Đánh giá

0

0 đánh giá