Với giải Câu hỏi trang 80 SBT Toán 10 Tập 1 Cánh Diều trong Bài 2: Giải tam giác. Tính diện tích tam giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập SBT Toán 10. Mời các bạn đón xem:
SBT Toán 10 Cánh Diều trang 80 Bài 2: Giải tam giác. Tính diện tích tam giác
Bài 17 trang 80 SBT Toán 10: Hai người A và B cùng quan sát một con tàu đang neo đậu ngoài khơi tại vị trí C. Người A đứng trên bờ biển, người B đứng trên một hòn đảo cách bờ một khoảng AB = 100m. Hai người tiến hành đo đạc và thu được kết quả (Hình 22). Hỏi con tàu cách hòn đảo bao xa (làm tròn kết quả đến hàng phần mười theo đơn vị mét)?
Lời giải:
Xét tam giác ABC, có: (định lí tổng ba góc)
⇒ .
Áp dụng định lí sin, ta được:
⇔
⇔ .
Vậy con tàu cách đảo 102, 7 m.
Bài 18 trang 80 SBT Toán 10: Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một con tàu C đang neo đậu ngoài khơi. Người đó tiến hành đo đạc và thu được kết quả: AB = 30 m, (Hình 23). Tính khoảng cách từ vị trí A đến con tàu C (làm tròn kết quả đến hàng phần mười theo đơn vị mét).
Lời giải:
Xét tam giác ABC, có:
(định lí tổng ba góc)
⇒ .
Áp dụng định lí sin, ta được:
Vậy khoảng cách từ vị trí A đến con tàu C là 24,5 m.
Bài 19 trang 80 SBT Toán 10: Lúc 6 giờ sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (Hình 24). Cho biết đoạn thẳng AB dài 762 m,
a) Tính chiều cao h của con dốc theo đơn vị mét (làm tròn kết quả đến hàng đơn vị).
b) Hỏi bạn An đến trường lúc mấy giờ? Biết rằng vận tốc trung bình lên dốc là 4km/h và tốc độ khi xuống dốc là 19 km/h.
Lời giải:
a) Đặt AH = x (m) (x > 0)
⇒ BH = AB – AH = 762 – x (m)
Xét tam giác AHC vuông tại H, có:
⇔
⇔ CH = tan6°.x
Xét tam giác BHC vuông tại H, có:
⇔ tan B =
⇔ CH = tan4°.(762 – x)
⇒ tan6°.x = tan4°.(762 – x)
⇔ (tan6° + tan4°).x ≈ 53,3
⇔ x ≈ 304,4
⇒ CH ≈ tan6°.304,4 ≈ 32
Vậy chiều cao của con dốc là 32 m.
b) Xét tam giác AHC vuông tại H, có:
sin A =
⇔ sin
⇔ AC =
Xét tam giác BHC vuông tại H, có:
sin B =
⇔
⇔
Thời gian bạn AN đi từ nhà đến trường là:
Vậy bạn An đến trường lúc: 6 giờ 6 phút.
Bài 20 trang 80 SBT Toán 10: Quan sát cây cầu văng minh họa ở Hình 25.
Tại trụ cao nhất, khoảng cách từ đỉnh trụ (vị trí A) tới chân trụ trên mặt cầu (vị trí H) là 150 m, độ dài dây văng dài nhất nối từ đỉnh trụ xuống mặt cầu (vị trí B) là 300m, khoảng cách từ chân dây văng dài nhất tới chân trụ trên mặt cầu là 250 m (Hình 26). Tính độ dốc của cầu qua trụ nói trên (làm tròn kết quả đến hàng phần mười theo đơn vị độ).
Lời giải:
Xét tam giác ABC, có:
⇒
Ta lại có:
Xét tam giác BHK vuông tại K, có:
(hai góc phụ nhau)
⇔
.
Vậy độ dốc của cầu qua trụ khoảng 3,8°.
Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều với cuộc sống hay, chi tiết khác:
Bài 12 trang 79 SBT Toán 10: Cho tam giác ABC có AB = 6,5 cm, AC = 8,5 cm, . Tính (làm tròn kết quả đến hàng phần mười theo đơn vị tương ứng)....
Bài 15 trang 79 SBT Toán 10: Cho tam giác ABC có ; BC = 8, AB + AC = 12. Tính độ dài các cạnh AB, AC.
Bài 20 trang 80 SBT Toán 10: Quan sát cây cầu văng minh họa ở Hình 25. Tại trụ cao nhất, khoảng cách từ đỉnh trụ (vị trí A) tới chân trụ trên mặt cầu (vị trí H)...
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.