Toán 10 Cánh diều Bài 3: Dấu của tam thức bậc hai

885

Toptailieu.vn giới thiệu Giải bài tập Toán lớp 10 Bài 3: Dấu của tam thức bậc hai - sách Cánh Diều giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 10 Tập 1. Mời các bạn đón xem:

 Toán 10 Cánh diều Bài 3: Dấu của tam thức bậc hai

Câu hỏi trang 44 Toán 10

Câu hỏi khởi động trang 44 SGK Toán 10 tập 1 :Để xây dựng phương án kinh doanh cho một loại sản phẩm, doanh nghiệm tính toán lợi nhuận y (đồng) theo công thức sau: y=200x2+92000x8400000, trong đó x là số sản phẩm được bán ra. Như vậy, việc đánh giá hiệu quả kinh doanh loại sản phẩm trên dẫn tới việc xét dấu của y=200x2+92000x8400000, tức là ta cần xét dấu của tam thức bậc hai f(x)=200x2+92000x8400000.

Làm thế nào để xét dấu của tam thức bậc hai?

Phương pháp giải:

Tính Δ=(b)2ac với b=92000=2b,a=200,c=8400000

Nếu Δ>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (;x1) và (x2;+);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải:

Xét dấu tam thức bậc hai tức là kiểm tra về dấu của tam thức bậc hai theo từng (khoảng) giá trị của ẩn.

Ta có a=200<0,b=92000,c=8400000

Δ=(92000:2)2(200).8400000=436000000>0

f(x) có 2 nghiệm x=230±10109. Khi đó:

f(x)<0 với mọi x thuộc các khoảng (;23010109) và (230+10109;+);

f(x)>0 với mọi x thuộc các khoảng (23010109;230+10109)

I. Dấu của tam thức bậc hai

Hoạt động 1 trang 44 SGK Toán 10 tập 1 :a) Quan sát Hình 17 và cho biết dấu của tam thức bậc hai f(x)=x22x+2

b) Quan sát Hình 18 và cho biết dấu của tam thức bậc hai f(x)=x2+4x5

 

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x)=ax2+bx+c(a0) với dấu của hệ số a trong trường hợp Δ<0.

Phương pháp giải:

a) ax2+bx+c>0 ứng với phần parabol  y=ax2+bx+c nằm phía trên trục hoành.

b) ax2+bx+c<0 ứng với phần parabol  y=ax2+bx+c nằm phía dưới trục hoành.

c) Rút ra nhận xét.

Lời giải:

a) Ta thấy đồ thị nằm trên trục hoành nên f(x)=x22x+2>0.

b) Ta thấy đồ thị nằm dưới trục hoành nên f(x)=x2+4x5<0.

c) Ta thấy f(x)=x22x+2 có hệ số a=1>0 và f(x)=x22x+2>0

f(x)=x2+4x5 có hệ số a=-1

Như thế, khi Δ<0 thì tam thức bậc hai f(x)=ax2+bx+c(a0) cùng dấu với hệ số a.

Câu hỏi trang 45 Toán 10

Hoạt động 2 trang 45 SGK Toán 10 tập 1 :a) Quan sát Hình 19 và cho biết dấu của tam thức bậc hai f(x)=x2+2x+1

 

b) Quan sát Hình 20 và cho biết dấu của tam thức bậc hai f(x)=x2+4x4

 

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x)=ax2+bx+c(a0) với dấu của hệ số a trong trường hợp Δ=0.

Phương pháp giải:

a) Xét giao điểm của đồ thị và trục hoành. Xét dấu của tam thức bậc hai f(x)=x2+2x+1.

b) Xét giao điểm của đồ thị và trục hoành. Xét dấu của tam thức bậc hai f(x)=x2+4x4.

c) Rút ra nhận xét.

Lời giải:

a) Từ đồ thị ta thấy x2+2x+10x

Và x2+2x+1>0xR{1}

b) Từ đồ thị ta thấy x2+4x40x

Và x2+4x4<0xR{2}

c) Nếu Δ=0 thì f(x) cùng dấu với dấu của hệ số a, với mọi xR{b2a}

Hoạt động 3 trang 45 SGK Toán 10 tập 1 :a) Quan sát Hình 21 và cho biết dấu của tam thức bậc hai f(x)=x2+3x+2 tùy theo các khoảng của x.

 

b) Quan sát Hình 22 và cho biết dấu của tam thức bậc hai f(x)=x2+4x3 tùy theo các khoảng của x.

 

c) Từ đó rút ra mối liên hệ về dấu của tam thức bậc hai f(x)=ax2+bx+c(a0) với dấu của hệ số tùy theo các khoảng của x trong trường hợp Δ>0.

Phương pháp giải:

a) Xét các khoảng (;2);(2;1);(1;+)

b) Xét các khoảng (;1);(1;3);(3;+)

c) Rút ra nhận xét.

Lời giải:

a) Ta thấy trên (;2): Đồ thị nằm trên trục hoành

=> f(x)=x2+3x+2>0x(;2)

Trên (2;1): Đồ thị nằm dưới trục hoành

=> f(x)=x2+3x+2<0x(2;1)

Trên (1;+): Đồ thị nằm trên trục hoành

=> f(x)=x2+3x+2>0x(1;+)

b)

Trên (;1): Đồ thị nằm dưới trục hoành

=> f(x)=x2+4x3<0x(;1)

Trên (1;3): Đồ thị nằm trên trục hoành

=> f(x)=x2+4x3>0x(1;3)

Trên (3;+): Đồ thị nằm dưới trục hoành

=> f(x)=x2+4x3<0x(3;+)

c) Nếu Δ>0 thì f(x) cùng dấu vưới hệ số a với mọi x thuộc các khoảng (;x1) và (x2;+)f(x) trái dấu với hệ số a với mọi x thuộc khoảng (x1;x2), trong đó x1,x2 là hai nghiệm của f(x) và x1<x2.

II. Ví dụ

Câu hỏi trang 46 Toán 10

Luyện tập – vận dụng 1 trang 46 SGK Toán 10 tập 1 :Xét dấu của mỗi tam thức bậc hai sau:

a) f(x)=2x2+4x5

b) f(x)=x2+6x9

Phương pháp giải:

Sử dụng biệt thức thu gọn Δ=(b)2ac với b=2b.

+ Nếu Δ<0 thì f(x) cùng dấu với hệ số a vời mọi xR.

+ Nếu Δ=0 thì f(x) cùng dấu với hệ số a vời mọi xR{ba}.

+ Nếu Δ>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (;x1) và (x2;+);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải:

a) Ta có a=2<0b=4=>b=2 và c=5

Δ=22(2).(5)=6<0

=>f(x) cùng dấu âm với hệ số a.

=> f(x)<0xR

b) Ta có: a=1,b=6,c=9=>b=3

Δ=32(1).(9)=0

b2a=ba=3

=> f(x) cùng dấu âm với hệ số a với mọi xR{3}

=> f(x)<0xR{3}

Luyện tập – vận dụng 2 trang 46 SGK Toán 10 tập 1 :Lập bảng xét dấu của tam thức bậc hai:

Lập bảng xét dấu của tam thức bậc hai: f(x)=x22x+8

Phương pháp giải:

Bước 1: Tìm nghiệm của f(x)=x22x+8 và hệ số a.

Bước 2: Lập bảng xét dấu.

Lời giải:

Tam thức bậc hai f(x)=x22x+8 có hai nghiệm phân biệt x1=4,x2=2 và hệ số a=1<0.

Ta có bảng xét dấu f(x) như sau:

 

Bài tập 

Câu hỏi trang 48 Toán 10

Bài 1 trang 48 SGK Toán 10 tập 1 :Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

a) x22x3>0 khi và chỉ khi x(;1)(3;+)

b) x22x3<0 khi và chỉ khi x[1;3]

Phương pháp giải:

- Tìm nghiệm của phương trình f(x)=0

- Nếu Δ>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (;x1) và (x2;+);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải:

a) Phương trình x22x3=0 có 2 nghiệm phân biệt x1=1,x2=3

Có a=1>0 nên f(x)=x22x3>0 khi và chỉ khi x(;1)(3;+)

=> Phát biểu đúng.

b) Phương trình x22x3=0 có 2 nghiệm phân biệt x1=1,x2=3

Có a=1>0 nên f(x)=x22x3<0 khi và chỉ khi x(1;3)

=> Phát biểu sai.

Bài 2 trang 48 SGK Toán 10 tập 1: Tìm nghiệm và lập bảng xét dấu của tam thức bậc hai f(x) với đồ thị được cho ở mỗi Hình 224a, 24b, 24c.

Phương pháp giải:

- Quan sát đồ thị và hoành độ giao điểm của đồ thị với trục hoành là nghiệm của phương trình f(x)=0.

- Lập bảng xét dấu cho mỗi hình.

Lời giải:

Hình 24a:

Ta thấy đồ thị cắt trục Ox tại điểm (2;0)

=> Phương trình f(x)=0 có nghiệm duy nhất x=2

Ta thấy đồ thị nằm trên trục hoành nên có bảng xét dấu:

Hình 24b:

Ta thấy đồ thị cắt trục Ox tại 2 điểm phân biệt (-4;0) và (-1;0)

=> Phương trình f(x)=0 có 2 nghiệm phân biệt x=4,x=1

Trong các khoảng (;4) và  (1;+) thì đồ thị nằm dưới trục hoành nên f(x)<0

Trong khoảng (4;1) thì đồ thị nằm trên trục hoành nên f(x)>0

Bảng xét dấu:


Hình 24c: 

Ta thấy đồ thị cắt trục Ox tại 2 điểm phân biệt (-1;0) và (2;0)

=> Phương trình f(x)=0 có 2 nghiệm phân biệt x=1,x=2

Trong các khoảng (;1) và  (2;+) thì đồ thị nằm trên trục hoành nên f(x)>0

Trong khoảng (1;2) thì đồ thị nằm dưới trục hoành nên f(x)<0

Bảng xét dấu:

Bài 3 trang 48 SGK Toán 10 tập 1 :Xét dấu của mỗi tam thức bậc hai sau:

a) f(x)=3x2−4x+1

b) f(x)=9x2+6x+1

c) f(x)=2x2−3x+10

d) f(x)=−5x2+2x+3

e) f(x)=−4x2+8x−4

g) f(x)=−3x2+3x−1

Phương pháp giải:

Sử dụng biệt thức thu gọn Δ′=(b′)2−ac với b=2b′.

+ Nếu Δ′<0 thì f(x) cùng dấu với hệ số a vời mọi x∈R.

+ Nếu Δ′=0 thì f(x) cùng dấu với hệ số a vời mọi x∈R∖{−b′a}.

+ Nếu Δ′>0 thì f(x) có 2 nghiệm x1,x2(x1<x2). Khi đó:

f(x) cùng dấu với hệ số a với mọi x thuộc các khoảng (−∞;x1) và (x2;+∞);

f(x) trái dấu với hệ số a với mọi x thuộc các khoảng (x1;x2)

Lời giải:

a) Ta có a=3>0,b=−4,c=1

Δ′=(−2)2−3.1=1>0

⇒f(x) có 2 nghiệm x=13,x=1. Khi đó:

f(x)>0 với mọi x thuộc các khoảng (−∞;13) và (1;+∞);

f(x)<0 với mọi x thuộc các khoảng (13;1)

b) Ta có a=9>0,b=6,c=1

Δ′=0

⇒f(x) có 1 nghiệm x=−13. Khi đó:

f(x)>0 với mọi x∈R∖{−13}

c) Ta có a=2>0,b=−3,c=10

Δ=(−3)2−4.2.10=−71<0

⇒f(x)>0∀x∈R

d) Ta có a=−5<0,b=2,c=3

Δ′=12−(−5).3=16>0

⇒f(x) có 2 nghiệm x=−35,x=1. Khi đó:

f(x)<0 với mọi x thuộc các khoảng (−∞;−35) và (1;+∞);

f(x)>0 với mọi x thuộc các khoảng (−35;1)

e) Ta có a=−4<0,b=8c=−4

Δ′=0

⇒f(x) có 1 nghiệm x=2. Khi đó:

f(x)<0 với mọi x∈R∖{2}

g) Ta có a=−3<0,b=3,c=−1

Δ=32−4.(−3).(−1)=−3<0

⇒f(x)<0∀x∈R

Bài 4 trang 48 SGK Toán 10 tập 1 :Một công ty du lịch thông báo giá tiền cho chuyến đi tham quan của một nhóm khách du lịch như sau:

50 khách đầu tiên có giá là 300 000 đồng/người. Nếu có nhiều hơn 50 người đăng kí thì cứ có thêm 1 người, giá vé sẽ giảm 5 000 đồng/người cho toàn bộ hành khách.

a) Gọi x là số lượng khách từ người thứ 51 trở lên của nhóm. Biểu thị doanh thu theo x.

b) Số người của nhóm khách du lịch nhiều nhất là bao nhiêu thì công ty không bị lỗ? Biết rằng chi phí thực sự cho chuyến đi là 15 080 000 đồng.

Phương pháp giải:

a) Biểu thị doanh thu theo x.

b) Tìm điều kiện của x để hàm số biểu diễn doanh thu không âm. Xét dấu hàm số.

Lời giải:

a)

Do x là số lượng khách thứ 51 trở lên nên x>0.

Cứ thêm 1 người thì giá còn (300000-5 000.1) đồng/người cho toàn bộ hành khách.

Thêm x người thì giá còn (300 000-5 000.x) đồng/người cho toàn bộ hành khách.

Doanh thu theo x: (50+x).(3000005000x) (VNĐ)

b) Do chi phí thực sự cho chuyến đi là 15 080 000 đồng nên để công ty không bị lỗ thì doanh thu phải lớn hơn hoặc bằng 15 080 000 đồng

Khi đó:

(50+x).(3000005000x)15080000(50+x).5000.(60x)15080000(x+50)(60x)3016x2+10x+30003016x2+10x160(x2)(8x)0(x2)(x8)02x8

Vậy số người của nhóm du khách nhiều nhất là 58 người.

Bài 5 trang 48 SGK Toán 10 tập 1 :Bộ phận nghiên cứu thị trường của một xí nghiệp xác định tổng chi phí để sản xuất

Q sản phẩm là Q2+180Q+140000(nghìn đồng). Giả sử giá mỗi sản phẩm bán ra

thị trường là 1 200 nghìn đồng.

a) Xác định lợi nhuận xí nghiệp thu được sau khi bán hết Q sản phẩm đó, biết rằng lợi nhuận là hiệu của doanh thu trừ đi tổng chi phí để sản xuất.

b) Xí nghiệp sản xuất bao nhiều sản phẩm thì hoà vốn?

c) Xí nghiệp cần sản xuất số sản phẩm là bao nhiêu để không bị lỗ?

Phương pháp giải:

a) Tính doanh thu khi bán hết Q sản phẩm

Lợi nhuận=Doanh thu-Chi phí

b) Để xí nghiệp hòa vốn thì: Lợi nhuận bằng 0.

c) Doanh thu lớn hơn hoặc bằng chi phí thì không bị lỗ.

Lời giải:

a) Doanh thu khi bán hết Q sản phẩm là 1200Q (nghìn đồng)

Lợi nhuận bán hết Q sản phẩm là:

1200Q(Q2+180Q+140000)=Q2+1020Q140000

b)

Để xí nghiệp hòa vốn thì: Lợi nhuận bằng 0.

Q2+1020Q140000=0[Q857Q163

Vậy xí nghiệp sản xuất 163 sản phẩm hoặc 857 sản phẩm thì hòa vốn.

c) Để không bị lỗ thì lợi nhuận lớn hơn hoặc bằng 0.

Khi đó:

Q2+1020Q1400000163,45Q857,55164Q857

Vậy để không bị lỗ thì xí nghiệp cần sản xuất số sản phẩm nằm trong khoảng 164 đến 857.

Đánh giá

0

0 đánh giá