Với giải HĐ2 trang 6 Toán 8 Tập 1 Kết nối tri thức chi tiết trong Bài 1: Đơn thức giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
HĐ2 trang 6 Toán 8 Tập 1 | Kết nối tri thức Giải Toán lớp 8
HĐ2 trang 6 Toán 8 Tập 1: Xét các biểu thức đại số:
−5x2y; ; 17z4; ; −2x + 7y; xy4x2; x + 2y – z.
Hãy sắp xếp các biểu thức đó thành hai nhóm:
Nhóm 1: Những biểu thức có chứa phép cộng hoặc phép trừ.
Nhóm 2: Các biểu thức còn lại.
Nếu hiểu đơn thức (nhiều biến) tương tự đơn thức một biến thì theo em, nhóm nào trong hai nhóm trên bao gồm những đơn thức?
Lời giải:
Ta sắp xếp các biểu thức đó thành hai nhóm như sau:
Nhóm 1: Những biểu thức có chứa phép cộng hoặc phép trừ.
; −2x + 7y; x + 2y – z.
Nhóm 2: Các biểu thức còn lại.
−5x2y; 17z4; ; xy4x2.
Nếu hiểu đơn thức (nhiều biến) tương tự đơn thức một biến thì nhóm 2 gồm những đơn thức.
Xem thêm các bài giải Toán 8 Kết nối tri thức hay, chi tiết khác:
HĐ2 trang 6 Toán 8 Tập 1: Xét các biểu thức đại số: −5x2y; ; 17z4; ; −2x + 7y; xy4x2; x + 2y – z.
Luyện tập 2 trang 8 Toán 8 Tập 1: Thu gọn và xác định bậc của đơn thức 4,5x2y(−2)xyz.
HĐ3 trang 8 Toán 8 Tập 1: Cho đơn thức một biến M = 3x2. Hãy viết ba đơn thức biến x, cùng bậc với M rồi so sánh phần biến của các đơn thức đó.
Luyện tập 3 trang 8 Toán 8 Tập 1: Cho đơn thức: .
HĐ5 trang 8 Toán 8 Tập 1: Quan sát các ví dụ sau: 2,5 . 32 . 53 + 8,5 . 32 . 53 = (2,5 + 8,5) . 32 . 53 = 11 . 32 . 53
HĐ6 trang 8 Toán 8 Tập 1: Cho hai đơn thức đồng dạng M = 2,5x2y3 và P = 8,5x2y3. Tương tự HĐ5, hãy:
Luyện tập 4 trang 9 Toán 8 Tập 1: Cho các đơn thức –x3y; 4x3y và –2x3y.
Bài 1.1 trang 9 Toán 8 Tập 1: Trong các biểu thức sau, biểu thức nào là đơn thức?
Bài 1.2 trang 9 Toán 8 Tập 1: Cho các đơn thức:
Bài 1.3 trang 10 Toán 8 Tập 1: Thu gọn rồi tính giá trị của mỗi đơn thức sau: a) khi .
Bài 1.5 trang 10 Toán 8 Tập 1: Rút gọn rồi tính giá trị biểu thức: khi x = −2 và y = 1.
Bài 1.6 trang 10 Toán 8 Tập 1: Tính tổng của bốn đơn thức: 2x^2y^3
Xem thêm các bài giải Toán 8 Kết nối tri thức hay, chi tiết khác:
Bài 3: Phép cộng và phép trừ đa thức
Bài 5: Phép chia đa thức cho đơn thức
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.