Với giải Bài 11 trang 121 Toán 8 Tập 1 Cánh Diều chi tiết trong Bài tập cuối chương 5 giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Bài 11 trang 121 Toán 8 Tập 1 | Cánh Diều Giải Toán lớp 8
Bài 11 trang 121 Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi M là điểm nằm giữa A và B, N là điểm nằm giữa C và D sao cho AM = CN. Gọi I là giao điểm của MN và AC. Chứng minh:
a) ΔIAM = ΔICN;
b) Tứ giác AMCN là hình bình hành;
c) Ba điểm B, I, D thẳng hàng.
Lời giải:
a) Do ABCD là hình bình hành nên AB // CD.
Suy ra và (các cặp góc so le trong)
Xét ΔIAM và ΔICN có:
(do );
AM = CN (giả thiết);
(do )
Do đó ΔIAM = ΔICN (g.c.g)
b) Xét tứ giác AMCN có AM = CN (giả thiết) và AM // CN (do AB // CD)
Suy ra tứ giác AMCN là hình bình hành.
c) Do AMCN là hình bình hành nên hai đường chéo AC, MN cắt nhau tại trung điểm I của mỗi đường.
Do ABCD là hình bình hành nên hai đường chéo AC, BD cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của AC nên I là trung điểm của BD.
Do đó ba điểm B, I, D thẳng hàng.
Xem thêm các bài giải Toán 8 Cánh Diều hay, chi tiết khác:
Bài 1 trang 120 Toán 8 Tập 1: Cho tứ giác ABCD có . Khi đó, bằng
Bài 2 trang 120 Toán 8 Tập 1: Cho hình thang cân ABCD có AB // CD, . Khi đó, bằng
Bài 3 trang 120 Toán 8 Tập 1: Cho hình bình hành MNPQ có các góc khác 90°, MP cắt NQ tại I.
Bài 4 trang 120 Toán 8 Tập 1: Cho hình chữ nhật MNPQ. Đoạn thẳng MP bằng đoạn thẳng nào sau đây?
Bài 7 trang 121 Toán 8 Tập 1: Cho tứ giác ABCD có . Chứng minh ABCD là hình bình hành.
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.