Với Giải Bài 3.18 trang 37 sách bài tập Toán 8 Tập 1 trong Bài 12: Hình bình hành Sách bài tập Toán lớp 8 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 8.
Cho hình bình hành ABCD. Lấy các điểm E thuộc AB, F thuộc CD sao cho AE = CF
Bài 3.18 trang 37 sách bài tập Toán 8 Tập 1: Cho hình bình hành ABCD. Lấy các điểm E thuộc AB, F thuộc CD sao cho AE = CF; lấy các điểm G thuộc BC, H thuộc AD sao cho BG = DH. Chứng minh EGFH là một hình bình hành và các đường thẳng AC, BD, EF, GH đồng quy.
Lời giải:
Do ABCD là hình bình hành nên , AD = BC, AB = CD,
• Ta có: AD = AH + DH, BC = BG + CG
Mà BG = DH, AD = BC nên AH = CG
Xét ∆AEH và ∆CFG có:
AH = CG, (do ), AE = CF
Suy ra ∆AEH = ∆CFG (c.g.c) nên EH = FG.
Ta có: AB = AE + BE, CD = CF + DF
Mà AB = CD, AE = CF nên BE = DF
Xét ∆BEG và ∆DFH có:
BE = DF, (do ), BG = DH
Suy ra ∆BEG = ∆DFH (c.g.c) nên EG = FH.
Tứ giác EGFH có EH = FG, EG = FH nên là một hình bình hành.
• Do ABCD là hình bình hành nên khi ta gọi O là giao điểm của AC thì O là trung điểm của BD.
Vì tứ giác BEDF là hình bình hành (do EB = DF và EB // DF) nên hai đường chéo EF cắt nhau DB tại trung điểm O của BD.
Tương tự, GH đi qua trung điểm O của BD.
Vậy các đường thẳng AC, BD, EF, GH đồng quy.
Xem thêm các bài giải sách bài tậpToán lớp 8 Kết nối tri thức hay, chi tiết khác:
Bài 3.12 trang 37 sách bài tập Toán 8 Tập 1: Xét hai hình bình hành MNBA và MNCB. a) Chứng minh A, B, C là ba điểm thẳng hàng;
Xem thêm các bài giải sách bài tậpToán lớp 8 Kết nối tri thức hay, chi tiết khác:
SBT Toán 8 (Kết nối tri thức) Bài 11: Hình thang cân
SBT Toán 8 (Kết nối tri thức) Bài 13: Hình chữ nhật
SBT Toán 8 (Kết nối tri thức) Bài 14: Hình thoi và hình vuông
SBT Toán 8 (Kết nối tri thức) Bài tập cuối chương 3
SBT Toán 8 (Kết nối tri thức) Bài 15: Định lí Thalès trong tam giác
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.