Cho ABC và A'B'C' lần lượt là các tam giác vuông tại đỉnh A và A'. Gọi M, M' lần lượt là trung điểm của AC và A'C'

110

Với giải Bài 9.52 trang 64 SBT Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài 36: Các trường hợp đồng dạng của hai tam giác vuông giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho ABC và A'B'C' lần lượt là các tam giác vuông tại đỉnh A và A'. Gọi M, M' lần lượt là trung điểm của AC và A'C'

Bài 9.52 trang 64 SBT Toán lớp 8 Tập 2: Cho ABC và A'B'C' lần lượt là các tam giác vuông tại đỉnh A và A'. Gọi M, M' lần lượt là trung điểm của AC và A'C'. Chứng minh rằng:

a) BC2 + 3BA2 = 4BM2 và B'C'2 + 3B'A'2 = 4B'M'2;

b) Nếu BCBM=B'C'B'M' thì ∆ABC ᔕ ∆A'B'C'.

Lời giải:

Cho ABC và A'B'C' lần lượt là các tam giác vuông tại đỉnh A và A'

a) Vì M là trung điểm của AC nên AC = 2AM. Suy ra AC2 = (2AM)2 = 4AM2.

Áp dụng định lý Pythagore cho tam giác ABC vuông tại A có:

BC2 = AB2 + AC2.

Áp dụng định lý Pythagore cho tam giác ABM vuông tại A có:

BM2 = AB2 + AM2.

Do đó, 4BM2 = 4(AB2 + AM2) = 4AB2 + 4AM2 = 4AB2 + AC2

= 3AB2 + (AB2 + AC2) = 3AB2 + BC2.

Vậy BC2 + 3BA2 = 4BM2.

Vì M' là trung điểm của A'C' nên A'C' = 2A'M'. Suy ra A'C'2 = (2A'M')2 = 4A'M'2.

Áp dụng định lí Pythagore cho tam giác A'B'C' vuông tại A' có:

B'C'2 = A'B'2 + A'C'2.

Áp dụng định lý Pythagore cho tam giác A'B'M' vuông tại A' có:

B'M'2 = A'B'2 + A'M'2.

Do đó, 4B'M'2 = 4(A'B'2 + A'M'2) = 4A'B'2 + 4A'M'2 = 4A'B'2 + A'C'2

= 3A'B'2 + (A'B'2 + A'C'2) = 3A'B'2 + B'C'2.

Vậy B'C'2 + 3B'A'2 = 4B'M'2.

b) Giả sử BCBM=B'C'B'M' . Suy ra BC2BM2=B'C'2B'M'2 (1).

Theo phần a ta có: BC2 + 3BA2 = 4BM2, chia cả 2 vế cho BM2, ta được:

BC2BM2+3BA2BM2=4.

Tương tự, ta có B'C'2B'M'2+3B'A'2B'M'2=4 .

Do đó, BC2BM2+3BA2BM2=B'C'2B'M'2+3B'A'2B'M'2=4 (2).

Từ (1) và (2), suy ra: BA2BM2=B'A'2B'M'2 hay BABM=B'A'B'M' .

Do đó, BCB'C'=BMB'M'=BAB'A'.

Hai tam giác ABC vuông tại A và A'B'C' vuông tại A' có BCB'C'=BAB'A' .

Vậy ∆ABC ᔕ ∆A'B'C' (ch – cgv).

Đánh giá

0

0 đánh giá