Với giải Bài 9.53 trang 64 SBT Toán 8 Tập 2 Kết nối tri thức chi tiết trong Bài 36: Các trường hợp đồng dạng của hai tam giác vuông giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN
Bài 9.53 trang 64 SBT Toán lớp 8 Tập 2: Cho hình vuông ABCD và M, N lần lượt là trung điểm của AB, BC. Gọi O là giao điểm của CM và DN.
a) Chứng minh rằng CM ⊥ DN.
b) Biết AB = 4 cm, hãy tính diện tích tam giác ONC.
Lời giải:
a) Vì ABCD là hình vuông nên AB = BC = CD = DA;
và .
Vì M là trung điểm của AB nên AM = MB = AB.
Vì N là trung điểm của BC nên NB = NC = BC.
Mà AB = BC nên AM = MB = NB = NC.
Xét tam giác CBM vuông ở B và tam giác DCN vuông ở C có:
MB = NC (cmt)
BC = CD (cmt)
Do đó, tam giác CBM và tam giác DCN bằng nhau (hai cạnh góc vuông).
Suy ra .
Mà nên .
Tam giác CON có:
(do ).
Nên .
Do đó, CM vuông góc với DN tại O.
b) Ta có BC = CD = DA = AB = 4 cm; NC = BC = CD = 2 cm hay CD = 2NC.
Áp dụng định lý Pythagore vào tam giác CND vuông tại C ta có:
ND2 = NC2 + CD2 = NC2 + (2NC)2 = 5NC2.
Do đó, . Suy ra .
Xét tam giác NOC vuông tại O và tam giác CND vuông tại C có:
chung
Do đó, ∆ONC ᔕ ∆CND (góc nhọn).
Suy ra . Do đó, OC = CD; ON = CN.
Vậy diện tích tam giác ONC là:
(cm2).
Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác:
Xem thêm Lời giải bài tập SBT Toán 8 Kết nối tri thức hay, chi tiết khác
Bài 35: Định lí Pythagore và ứng dụng
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.