Bài 1.10 trang 19 Toán 12 Tập 1 | Kết nối tri thức Giải Toán lớp 12

191

Với giải Bài 1.10 trang 19 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 2: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Bài 1.10 trang 19 Toán 12 Tập 1 | Kết nối tri thức Giải Toán lớp 12

Bài 1.10 trang 19 SGK Toán 12 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=x2+4x+3;
b) y=x32x2+1 trên [0;+);
c) y=x22x+3x1 trên (1;+);
d) y=4x2x2.

Lời giải:

a) Ta có: y=x2+4x+3=(x2)2+77 với mọi số thực x.

Dấu “=” xảy ra khi x2=0x=2.

Do đó, maxf(x)=f(2)=7, hàm số không có giá trị nhỏ nhất.

b) GTLN, GTNN của y=x32x2+1 trên [0;+)

Ta có: y=3x24x,y=0[x=0(tm)x=43(tm)

Bảng biến thiên:

Do đó, min[0;+)y=y(43)=527, hàm số không có giá trị lớn nhất.

c) Ta có: y=(2x2)(x1)(x22x+3)(x1)2=x22x1(x1)2

y=0x=1+2 (do x(1;+))

Do đó, min(1;+)y=y(1+2)=22, hàm số không có giá trị lớn nhất trên (1;+).

d) Tập xác định của hàm số là: D=[0;2]

y=(4x2x2)24x2x2=44x24x2x2=2(1x)4x2x2

y=0x=1(tm)

y(0)=0;y(1)=2;y(2)=0

Do đó, max[0;2]y=y(1)=2,min[0;2]y=y(0)=y(2)=0

Đánh giá

0

0 đánh giá