Với giải HĐ1 trang 105 Toán 11 Tập 1 Kết nối tri thức chi tiết trong Bài 15: Giới hạn của dãy số giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
HĐ1 trang 105 Toán 11 Tập 1 | Kết nối tri thức Giải Toán lớp 11
HĐ1 trang 105 Toán 11 Tập 1: Nhận biết dãy số có giới hạn là 0
Cho dãy số (un) với .
a) Biểu diễn năm số hạng đầu của dãy số này trên trục số.
b) Bắt đầu từ số hạng nào của dãy, khoảng cách từ un đến 0 nhỏ hơn 0,01?
Lời giải:
a) Năm số hạng đầu của dãy số (un) đã cho là ; ; ; ; .
Biểu diễn các số hạng này trên trục số, ta được:
b) Khoảng cách từ un đến 0 là .
Ta có: .
Vậy bắt đầu từ số hạng thứ 101 của dãy thì khoảng cách từ un đến 0 nhỏ hơn 0,01.
Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 105 Toán 11 Tập 1: Nhận biết dãy số có giới hạn là 0
Cho dãy số (un) với .
Luyện tập 1 trang 105 Toán 11 Tập 1: Chứng minh rằng .
HĐ2 trang 105 Toán 11 Tập 1: Nhận biết dãy số có giới hạn hữu hạn Cho dãy số (un) với . Xét dãy số (vn) xác định bởi vn = un – 1.
Luyện tập 2 trang 106 Toán 11 Tập 1: Cho dãy số (un) với . Chứng minh rằng .
HĐ3 trang 106 Toán 11 Tập 1: Hình thành quy tắc tính giới hạn
Cho hai dãy số (un) và (vn) với .
Luyện tập 3 trang 107 Toán 11 Tập 1: Tìm .
HĐ4 trang 107 Toán 11 Tập 1: Làm quen với việc tính tổng vô hạn
Luyện tập 4 trang 108 Toán 11 Tập 1: Tính tổng
Luyện tập 5 trang 109 Toán 11 Tập 1: Tính .
Bài 5.1 trang 109 Toán 11 Tập 1: Tìm các giới hạn sau: a)
Bài 5.2 trang 109 Toán 11 Tập 1: Cho hai dãy số không âm (un) và (vn) với và . Tìm các giới hạn sau:
a) ;
Bài 5.3 trang 109 Toán 11 Tập 1: Tìm giới hạn của các dãy số cho bởi: a) ;
Xem thêm các bài giải sách giáo khoa Toán 11 Kết nối tri thức hay, chi tiết khác:
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.