Giải Toán 11 trang 108 Tập 1 (Kết nối tri thức)

104

Với giải SGK Toán 11 Kết nối tri thức trang 108 chi tiết trong Bài 15: Giới hạn của dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 trang 108 Tập 1 (Kết nối tri thức)

Luyện tập 3 trang 107 Toán 11 Tập 1: Tìm limn+2n2+1n+1.

Lời giải:

Áp dụng các quy tắc tính giới hạn, ta được:

limn+2n2+1n+1=limn+n22+1n2n+1=limn+n2+1n2n1+1n=limn+2+1n21+1n=21=2.

3. Tổng của cấp số nhân lùi vô hạn

HĐ4 trang 107 Toán 11 Tập 1: Làm quen với việc tính tổng vô hạn

Cho hình vuông cạnh 1 (đơn vị độ dài). Chia hình vuông đó thành bốn hình vuông nhỏ bằng nhau, sau đó tô màu hình vuông nhỏ góc dưới bên trái (H.5.2). Lặp lại các thao tác này với hình vuông nhỏ góc trên bên phải. Giả sử quá trình trên tiếp diễn vô hạn lần. Gọi u1, u2, ..., un, ... lần lượt là độ dài cạnh của các hình vuông được tô màu.

Toán 11 (Kết nối tri thức) Bài 15: Giới hạn của dãy số (ảnh 4)

a) Tính tổng Sn = u1 + u2 + ... + un.

b) Tìm S = limn+Sn.

Lời giải:

a) Ta có: u1 là độ dài cạnh của hình vuông được tô màu tạo từ việc chia hình vuông cạnh 1 thành 4 hình vuông nhỏ bằng nhau, do đó u1=12.

Cứ tiếp tục như thế, ta được: u2=12u1,u3=12u2,..., un=12un1, ...

Do vậy, độ dài cạnh của các hình vuông được tô màu lập thành một cấp số nhân với số hạng đầu u1=12 và công bội q=12.

Do đó, tổng của n số hạng đầu là

Sn = u1 + u2 + ... + un = u11qn1q=12112n112=112n.

b) Ta có: S = limn+Sn = limn+112n=limn+1limn+12n=10=1 .

Đánh giá

0

0 đánh giá