Với Giải Bài 7 trang 27 SBT Toán 11 Tập 1 trong Bài 4: Hàm số lượng giác và đồ thị Sách bài tập Toán lớp 11 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.
Huyết áp là áp lực máu cần thiết tác động lên thành động mạch nhằm đưa máu đi nuôi dưỡng các mô trong cơ thế
Bài 7 trang 27 SBT Toán 11 Tập 1: Huyết áp là áp lực máu cần thiết tác động lên thành động mạch nhằm đưa máu đi nuôi dưỡng các mô trong cơ thế. Nhờ lực co bóp của tim và sức cản của động mạch mà huyết áp được tạo ra. Giả sử huyết áp của một người thay đổi theo thời gian được cho bởi công thức: p(t) = 120 + 15cos150πt, trong đó p(t) là huyết áp tính theo đơn vị mmHg (milimets thủy ngân) và thời gian t tính theo đơn vị phút.
a) Chứng minh p(t) là một phần hàm số tuần hoàn.
b) Huyết áp cao nhất và huyết áp thấp nhất lần lượt được gọi là huyết áp tâm thu và huyết áp tâm trương. Tìm chỉ số huyết áp của người đó, biết rằng chỉ số huyết áp được viết là huyết áp tâm thu/huyết áp tâm trương.
Lời giải:
a) Hàm số p(t) có tập xác định làℝ. Với mọi t ∈ ℝ, ta có
và .
Do đó p(t) là một hàm số tuần hoàn.
b) Vì ‒1 ≤ cos150πt ≤ 1 với mọi t ∈ ℝ nên 105 ≤ p(t) ≤ 135 với mọi t ∈ ℝ.
Vậy chỉ số huyết áp của người đó là 135/105.
Xem thêm các bài SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 2 trang 26 SBT Toán 11 Tập 1: Xét tính chẵn, lẻ của các hàm số sau: a)
Bài 3 trang 26 SBT Toán 11 Tập 1: Tìm tập giá trị của các hàm số sau: a)
Bài 4 trang 27 SBT Toán 11 Tập 1: Cho hàm số y = sinx với x ∈ [‒2π; 2π] a) Vẽ đồ thị hàm số đã cho
Bài 5 trang 27 SBT Toán 11 Tập 1: Cho hàm số y = tanx với a) Vẽ đồ thị hàm số đã cho
Bài 6 trang 27 SBT Toán 11 Tập 1: Chứng minh rằng các hàm số dưới đây là hàm số tuần hoàn. a)
Xem thêm các bài SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Các công thức lượng giác
Bài 5: Phương trình lượng giác cơ bản
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.