Tìm tập xác định của các hàm số: y = căn 1 + sin 3x

326

Với Giải Bài 41 trang 22 SBT Toán 11 Tập 1 trong Bài 3: Hàm số lượng giác và đồ thị Sách bài tập Toán lớp 11 Cánh Diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 11.

Tìm tập xác định của các hàm số: y = căn 1 + sin 3x

Bài 41 trang 22 SBT Toán 11 Tập 1m tập xác định của các hàm số:

a) y=1+sin3x ;

b) y=sin2x1cosx ;

c) y=1+cos2xsinx .

d) y=1sinx+cosx ;

e) y=11+sinxcosx ;

g) y=cosx1 .

Lời giải:

a) Vì sin 3x ∈ [− 1; 1] nên 1 + sin 3x ≥ 0 với mọi x ∈ ℝ.

Do đó biểu thức 1+sin3x  có nghĩa với mọi x ∈ ℝ.

Vậy tập xác định của hàm số y=1+sin3x  là D = ℝ.

b) Vì cos x ∈ [− 1; 1] nên 1 – cos x ≥ 0 với mọi x ∈ ℝ.

Nên biểu thức sin2x1cosx  có nghĩa khi 1 – cos x ≠ 0 hay cos x ≠ 1, tức là x ≠ k2π, k ∈ ℤ.

Vậy tập xác định của hàm số y=sin2x1cosx  là Tìm tập xác định của các hàm số trang 22 SBT Toán 11

c) Biểu thức 1+cos2xsinx  có nghĩa khi Tìm tập xác định của các hàm số trang 22 SBT Toán 11

Mà cos 2x ∈ [− 1; 1] nên 1 + cos 2x ≥ 0 với mọi x ∈ ℝ.

Và sin x ≠ 0 khi xkπ,  k .

Vậy tập xác định của hàm số y=1+cos2xsinx  là Tìm tập xác định của các hàm số trang 22 SBT Toán 11

d) Biểu thức 1sinx+cosx  có nghĩa khi sin x + cos x ≠ 0

⇔ sin x ≠ – cos x ⇔ tan x ≠ – 1.

Mà tan x ≠ – 1 khi xπ4+kπ,  k .

Vậy tập xác định của hàm số y=1sinx+cosx  là Tìm tập xác định của các hàm số trang 22 SBT Toán 11

e) Ta có: 1 + sin x cos x = 1+sin2x2 .

Vì – 1 ≤ sin 2x ≤ 1 nên 121+sin2x232  với mọi x ∈ ℝ.

Do đó 1 + sin x cos x > 0 với mọi x ∈ ℝ.

Khi đó biểu thức 11+sinxcosx  có nghĩa với mọi x ∈ ℝ.

Vậy tập xác định của hàm số y=11+sinxcosx  là D = ℝ.

g) Biểu thức cosx1  có nghĩa khi cos x – 1 ≥ 0 hay cos x ≥ 1.

Mà cos x ∈ [− 1; 1] với mọi x ∈ ℝ.

Do đó, biểu thức cosx1  có nghĩa khi cos x = 1, tức là x = k2π, k ∈ ℤ.

Vậy tập xác định của hàm số y=cosx1  là D = {k2π| k ∈ ℤ}.

Đánh giá

0

0 đánh giá