30 bài tập trắc nghiệm Đồ thị hàm số y = ax2 (a ≠ 0) (có đáp án)

Toptailieu.vn xin giới thiệu 35 bài tập trắc nghiệm Đồ thị hàm số y = ax2 (có đáp án) chọn lọc, hay nhất giúp học sinh lớp 9 ôn luyện kiến thức để đạt kết quả cao trong các bài thi môn Toán.

Mời các bạn đón xem:

Đồ thị hàm số y = ax2

Câu 1: Hình vẽ dưới đây là của đồ thị hàm số nào?

 (ảnh 1)

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Lời giải:

Từ hình vẽ ta thấy đồ thị đi qua điểm có tọa độ (3; 3), ta thay x = 3; y = 3 vào từng hàm số ở các đáp án ta được:

+ Đáp án A: y = x2 ⇔ 3 = 33 ⇔ 3 = 9 (vô lý) nên loại A

+ Đáp án B: Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án (vô lý) nên loại B

+ Đáp án C: y = 3x2 ⇔  3 = 3.33 ⇔ 3 = 27 (vô lý) nên loại C

+ Đáp án D: Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án (luôn đúng) nên chọn D.

Đáp án cần chọn là: D

Câu 2: Cho hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án có đồ thị là (P). Có bao nhiêu điểm trên (P) có tung độ gấp đôi hoành độ?

A. 5            

B. 4            

C. 3            

D. 1

Lời giải:

Gọi điểm M (x; y) là điểm cần tìm. Vì M có tung độ gấp đôi hoành độ nên: M (x; 2x)

Thay tọa độ điểm M vào hàm số ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Đáp án cần chọn là: D

Câu 3: Cho hàm số: Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án có đồ thị là (P). Điểm trên (P) (khác gốc tọa độ O(0; 0) có tung độ cấp ba lần hoành độ thì có hoành độ là:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Lời giải:

Gọi điểm M (x; y) là điểm cần tìm. Vì M có tung độ gấp ba lần hoành độ nên: M(x; 3x)

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Đáp án cần chọn là: B

Câu 4: Trong các điểm: A (1; 2); B (−1; −1); C (10; −200); D(√10;10)  có bao nhiêu điểm thuộc đồ thị hàm số (P): y = −x22

A. 1            

B. 4            

C. 3            

D. 2

Lời giải:

+) Thay tọa độ điểm A (1; 2) vào hàm số y = −x2 ta được 2 = −12 (vô lý) nên A ∉ (P)

+) Thay tọa độ điểm C (10; −200) vào hàm số y = −x2 ta được – 200 = − (10)2

⇔ −200 = −100 (vô lý) nên C ∉ (P)

+) Thay tọa độ điểm D (√10;10)  vào hàm số y = −x2 ta được Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án (luôn đúng) nên D ∈ (P)

+) Thay tọa độ điểm B (−1; −1) vào hàm số y = −x2 ta được −1 = − (−1)2

⇔ −1 = −1 (luôn đúng) nên B ∈ (P)

Đáp án cần chọn là: D

Câu 5: Trong các điểm A (5; 5); B (−5; −5); C (10; 20); D (√10; 2) có bao nhiêu điểm không thuộc đồ thị hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

A. 1            

B. 4            

C. 3            

D. 2

Lời giải:

+) Thay tọa độ điểm A (5; 5) vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án  ta được Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án (luôn đúng) nên A ∈ (P)

+) Thay tọa độ điểm B (−5; −5) vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án  ta được Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

⇔ −5 = 5 (vô lý) nên B ∉ (P)

+) Thay tọa độ điểm D (√10; 2) vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án  ta được Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

⇔ 2 = 2 (luôn đúng) nên D ∈ (P)

+) Thay tọa độ điểm C (10; 20) vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án  ta được Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

⇔ 20 = 20 (luôn đúng) nên C ∈ (P)

Vậy có 1 điểm không thuộc (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án là điểm B (−5; −5)

Đáp án cần chọn là: A

Câu 6: Cho (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án. Tìm tọa độ giao điểm của (P) và (d)

Lời giải:

Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Thay x = 1 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Nên tọa độ giao điểm cần tìm là Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Đáp án cần chọn là: A

Câu 7: Cho parabol Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án . Xác định m để điểm A (√2; m) nằm trên parabol.

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Lời giải:

Thay x = √2; y = m vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Đáp án cần chọn là: A

Câu 8: Cho parabol (P) Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án. Xác định m để điểm Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án nằm trên parabol

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Lời giải:

Thay Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Đáp án cần chọn là: D

Câu 9: Cho parabol (P): y = 2x2 và đường thẳng (d): y = x + 1. Số giao điểm của đường thẳng d và parabol (P) là:

A. 1            

B. 0            

C. 3            

D. 2

Lời giải:

Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Vậy có hai giao điểm của đường thẳng d và parabol (P)

Đáp án cần chọn là: D

Câu 10: Cho parabol (P): y = 5x2 và đường thẳng (d): y = −4x – 4. Số giao điểm của đường thẳng d và parabol (P) là:

A. 1            

B. 0            

C. 3            

D. 2

Lời giải:

Xét phương trình hoành độ giao điểm của parabol (P) và đường thẳng d

5x2 = −4x – 4 ⇔ 5x2 + 4x + 4 = 0 ⇔ 4x2 + x2 + 4x + 4 = 0 ⇔ x2 + (x + 2)2 = 0(*)

Xét x2 + (x + 2)2 ≥ 0;  ∀x và dấu “=” xảy ra khi Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án (vô lý)

nên x2 + (x + 2)2 > 0, ∀x

Hay phương trình (*) vô nghiệm

Vậy không có giao điểm của đường thẳng (d) và parabol (P)

Đáp án cần chọn là: B

Câu 11: Cho parabol (P): y = (m – 1)x2 và đường thẳng (d): y = 3 – 2x. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 5.

A. m = 5     

B. m = 7     

C. m = 6     

D. m = −6

Lời giải:

Thay y = 5 vào phương trình đường thẳng d ta được 5 = 3 – 2x ⇔ x = −1

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (−1; 5)

Thay x = −1; y = 5 vào hàm số y = (m – 1)xta được:

(m – 1). (−1)2 = 5 ⇔ m – 1 = 5 ⇔ m = 6

Vậy m = 6 là giá trị cần tìm

Đáp án cần chọn là: C

Câu 12: Cho parabol (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 5x + 4. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 9

A. m = 5     

B. m = 15   

C. m = 6     

D. m = 16

Lời giải:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Thay y = 9 vào phương trình đường thẳng d ta được 9 = 5x + 4 ⇔ x = 1

nên tọa độ giao điểm của đường thẳng d và parabol (P) là 91; 9)

Thay x = 1; y = 9 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Vậy m = 16 là giá trị cần tìm

Đáp án cần chọn là: D

Câu 13: Cho parabol (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 2x + 2. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 4. Tìm hoành độ giao điểm còn lại của d và parabol (P)

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Lời giải:

Thay y = 4 vào phương trình đường thẳng d ta được 2x + 2 = 4 ⇔ x = 1

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (1; 4)

Thay x = 1; y = 4 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Xét phương trình hoành độ giao điểm của d và (P):

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Đáp án cần chọn là: A

Câu 14: Cho parabol (P):Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 3x – 5. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 1. Tìm m và hoành độ giao điểm còn lại của d và parabol (P)

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Lời giải:

Thay y = 1 vào phương trình đường thẳng d ta được 3x – 5 = 1 ⇔ x = 2

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (2; 1)

Thay x = 2; y = 1 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Xét phương trình hoành độ giao điểm của d và (P):

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Vậy hoành độ giao điểm còn lại là x = 10

Đáp án cần chọn là: D

Câu 15: Cho đồ thị hàm số y = 2x2 (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình 2x2 – m – 5 = 0 có hai nghiệm phân biệt.

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

A. m < −5   

B. m > 0     

C. m < 0     

D. m > −5

Lời giải:

Ta có 2x2 – m – 5 = 0 (*) ⇔ 2x2 = m + 5

Số nghiệm của phương trình (*) là số giao điểm của parabol (P): y = 2x2 và đường thẳng d: y = m + 5

Để (*) có hai nghiệm phân biệt thì d cắt (P) tại hai điểm phân biệt. Từ đồ thị hàm số ta thấy:

Với m + 5 > 0 ⇔ m > −5 thì d cắt (P) tại hai điểm phân biệt hay phương trình (*) có hai nghiệm phân biệt khi m > −5

Đáp án cần chọn là: D

Câu 16: Cho đồ thị hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình x2 – 2m + 4 = 0 có hai nghiệm phân biệt.

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

A. m > 2     

B. m > 0     

C. m < 2     

D. m > −2

Lời giải:

Xét phương trình x2 – 2m + 4 = 0 (*) ⇔ x2 = 2m – 4 Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Số nghiệm của phương trình (*) là số giao điểm của parabol (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng d: y = m – 2

Để (*) có hai nghiệm phân biệt thì d cắt (P) tại hai điểm phân biệt

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Từ đồ thị hàm số ta thấy:

Với m – 2 > 0 ⇔ m > 2 thì d cắt (P) tại hai điểm phân biệt hay phương trình (*) có hai nghiệm phân biệt khi m > 2

Đáp án cần chọn là: A

Câu 17: Tọa độ giao điểm của đồ thị hàm số y = x2 với đường thẳng y = 4x - 3 là?

A. (-1; 1), (3; 9)

B. (-1; 1), (-3; 9)

C. (1; 1), (3; 9)

D. (1; 1), (-3; 9)

Lời giải:

Phương trình hoành độ giao điểm là:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Do đó tọa độ giao điểm là (1; 1), (3; 9)

Đáp án cần chọn là:C

Câu 18: Số giao điểm của đồ thị hàm số y = 4x2 với đường thẳng y = 4x - 3

A. 1

B. 0

C. 2

D. 3

Lời giải:

Phương trình hoành độ giao điểm:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Khi đó phương trình hoành độ giao điểm trên vô nghiệm.

Vậy không có giao điểm nào

Đáp án cần chọn là:B

Câu 19: Trên mặt phẳng tọa độ cho điểm A( 1; 2) thuộc đồ thị hàm số y = ax2 (a ≠ 0).

Hỏi điểm nào thuộc đồ thị hàm số ?

A. M (2; 8)

B. N ( -2; 4)

C. P( - 3; 9)

D. Q( 4; 16)

Lời giải:

Vì điểm A(1; 2) thuộc đồ thị hàm số y = ax2 (a ≠ 0) nên:

2 = a.12 ⇒ a = 2

Vây hàm số đã cho là y = 2x2.

Trong các điểm đã cho chỉ có điểm M (2; 8) thuộc đồ thị hàm số .

Đáp án cần chọn là:A

Câu 20: Biết đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm A(1; a). Hỏi có bao nhiêu giá trị của a thỏa mãn?

A. 1

B. 2

C. 0

D. Vô số

Lời giải:

Do đồ thị hàm số y = ax2 (a ≠ 0) đi qua điểm A(1; a) nên:

a = a.12 ⇔ a = a ( luôn đúng với mọi a khác 0).

Vậy có vô số giá trị của a thỏa mãn.

Đáp án cần chọn là:D

Câu 21: Cho đồ thị hàm số y = -2x2. Tìm các điểm thuộc đồ thị hàm số đã cho có tung độ - 8.

A. (2; -8)

B. (-2; -8)

C. Cả A và B đúng

D. Tất cả sai

Lời giải:

Các điểm thuộc đồ thị hàm số đã cho có tung độ bằng -8 thỏa mãn:

-8 = -2x2 ⇔ x2 = 4 ⇔ x = ±2

Vậy có 2 điểm thuộc đồ thị hàm số đã cho có tung độ bằng -8 là M (-2; - 8) và N(2; -8)

Đáp án cần chọn là:C

Câu 22: Cho y = ax2 (a ≠ 0) đồ thị hàm số . Với giá trị nào của a thì đồ thị của hàm số đã cho nằm phía trên trục hoành.

A. a < 0

B. a > 0

C. a < 2

D. a > 2

Lời giải:

Đồ thị hàm số y = ax2 (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục tung làm đối xứng.

+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành.

+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành.

Do đó, để đồ thị hàm số đã cho nằm phía trên trục hoành thì a > 0.

Đáp án cần chọn là:B

Câu 23: Cho đồ thị của các hàm số sau:

(1): y = - 2x2      (2): y = x2      (3): y = -3x2      (4): y = -10x2

Hỏi có bao nhiêu đồ thị hàm số nằm phía dưới trục hoành?

A. 1

B. 2

C. 3

D. 4

Lời giải:

Đồ thị hàm số y = ax2 (a ≠ 0) là một đường cong đi qua gốc tọa độ và nhận trục tung làm đối xứng.

+ Nếu a > 0 thì đồ thị nằm phía trên trục hoành.

+ Nếu a < 0 thì đồ thị nằm phía dưới trục hoành.

Trong đồ thị các hàm số đã cho; các đồ thị nằm phía dưới trục hoành là”

(1): y = -2x2; (3): y = - 3x2 và (4):y = -10x2

Đáp án cần chọn là:C

Câu 24: Cho đồ thị hàm số y = 3x2. Tìm tung độ của điểm thuộc parabol có hoành độ là số nguyên dương nhỏ nhất?

A. 0

B. 1

C. -3

D. 3

Lời giải:

Số nguyên dương nhỏ nhất là 1.

Do đó, tung độ của điểm thuộc parabol có hoành độ 1 là: y = 3.12 = 3

Đáp án cần chọn là:D

Câu 25: Cho đồ thị hàm số y = x2 và y = 3x2. Tìm giao điểm của hai đồ thị hàm số đã cho?

A. O(0; 0)

B. A(1; 1)

C. O(0; 0) và A(1; 1)

D. O(0; 0) và B( 1; 3)

Lời giải:

Hoành độ giao điểm của hai đồ thị hàm số đã cho là nghiệm phương trình:

x2 = 3x2 ⇔ -2x2 = 0 ⇔ x = 0

Với x = 0 thì y= 02 = 0

Do đó,đồ thị hai hàm số đã cho cắt nhau tại điểm duy nhất là gốc tọa độ O(0; 0).

Đáp án cần chọn là:A

Câu 26: Cho parabol (P): y = (m – 1)x2 và đường thẳng (d): y = 3 – 2x. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 5.

A. m = 5     

B. m = 7     

C. m = 6     

D. m = −6

Lời giải:

Thay y = 5 vào phương trình đường thẳng d ta được 5 = 3 – 2x ⇔ x = −1

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (−1; 5)

Thay x = −1; y = 5 vào hàm số y = (m – 1)xta được:

(m – 1). (−1)2 = 5 ⇔ m – 1 = 5 ⇔ m = 6

Vậy m = 6 là giá trị cần tìm

Đáp án cần chọn là:C

Câu 27: Cho parabol (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 5x + 4. Tìm m để đường thẳng d cắt (P) tại điểm có tung độ y = 9

A. m = 5     

B. m = 15   

C. m = 6     

D. m = 16

Lời giải:

ĐK: m > -1/5

Thay y = 9 vào phương trình đường thẳng d ta được 9 = 5x + 4 ⇔ x = 1

nên tọa độ giao điểm của đường thẳng d và parabol (P) là 91; 9)

Thay x = 1; y = 9 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Vậy m = 16 là giá trị cần tìm

Đáp án cần chọn là:D

Câu 28: Cho parabol (P): Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 2x + 2. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 4. Tìm hoành độ giao điểm còn lại của d và parabol (P)

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Lời giải:

Thay y = 4 vào phương trình đường thẳng d ta được 2x + 2 = 4 ⇔ x = 1

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (1; 4)

Thay x = 1; y = 4 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Xét phương trình hoành độ giao điểm của d và (P):

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Đáp án cần chọn là:A

Câu 29: Cho parabol (P):Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án và đường thẳng (d): y = 3x – 5. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 1. Tìm m và hoành độ giao điểm còn lại của d và parabol (P)

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Lời giải:

Thay y = 1 vào phương trình đường thẳng d ta được 3x – 5 = 1 ⇔ x = 2

Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (2; 1)

Thay x = 2; y = 1 vào hàm số Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án ta được:

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Xét phương trình hoành độ giao điểm của d và (P):

Trắc nghiệm Đồ thị hàm số y = ax^2 (a ≠ 0) có đáp án

Vậy hoành độ giao điểm còn lại là x = 10

Đáp án cần chọn là:D

Câu 30: Điểm P(-1; -2) thuộc đồ thị hàm số y= -mx2 khi m bằng:

A. -2

B. 2

C. -4

D. 4

Lời giải:

Đáp án B

Đáp án cần chọn là:B

Tài liệu có 21 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tài liệu cùng môn học

Lý thuyết Ôn tập chương 7 (Cánh Diều) Toán 7 Giang Tiêu đề (copy ở trên xuống) - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
719 47 14
Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường cao của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
607 12 6
Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường trung trực của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
694 12 9
Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 Giang Lý thuyết Tính chất ba đường phân giác của tam giác (Cánh Diều) Toán 7 - Trọn bộ lý thuyết Toán 7 Cánh Diều hay, chi tiết giúp em học tốt Toán 7.
675 13 8
Tải xuống