Cho tam giác đều ABC, từ B và C kẻ các đường thẳng song song với AC

107

Với giải Bài 8 trang 64 SBT Toán 8 Chân trời sáng tạo chi tiết trong Bài 2: Các trường hợp đồng dạng của hai tam giác giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Cho tam giác đều ABC, từ B và C kẻ các đường thẳng song song với AC

Bài 8 trang 64 SBT Toán 8 Tập 2Cho tam giác đều ABC, từ B và C kẻ các đường thẳng song song với AC và AB, hai đường này cắt nhau tại M. Qua M kẻ đường thẳng cắt AB tại E và cắt AC tại F. Chứng minh rằng:

a) CACF=MEMF và BEBA=MEMF.

b) ∆BCE ᔕ ∆CFB.

Lời giải:

Cho tam giác đều ABC, từ B và C kẻ các đường thẳng song song với AC và AB

a) Xét ∆MCF có AE // CM (vì AB // CM), theo định lí Thalès ta có:

CACF=MEMF (1)

Xét ∆BEM có AF // BM (vì AC // BM), theo hệ quả của định lí Thalès ta có:

AEBE=EFME.

Ta có AEBE+1=EFME+1 hay AEBE+BEBE=EFME+MEME.

Suy ra BABE=MFME hay BEBA=MEMF (2)

b) Từ (1) và (2), suy ra CACF=BEBA, mà AB = BC = AC. Suy ra BCCF=BEBC.

Xét ∆BCE và ∆CFB có BCCF=BEBC và EBC^=BCF^ (∆ABC đều).

Do đó ∆BCE ᔕ ∆CFB (c.g.c).

 

Đánh giá

0

0 đánh giá