Bài 2.6 trang 58 Toán 12 Tập 1 | Kết nối tri thức Giải Toán lớp 12

108

Với giải Bài 2.6 trang 58 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 6: Vectơ trong không gian giúp học sinh dễ dàng xem và so sánh lời giải, từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Bài 2.6 trang 58 Toán 12 Tập 1 | Kết nối tri thức Giải Toán lớp 12

Bài 2.6 trang 58 SGK Toán 12 Tập 1: Cho hình chóp tứ giác S. ABCD. Chứng minh rằng tứ giác ABCD là hình bình hành nếu và chỉ nếu SA+SC=SB+SD

Lời giải:

Chứng minh: Nếu tứ giác ABCD là hình bình hành thì SA+SC=SB+SD

Gọi O là tâm hình bình hành ABCD. Khi đó, O là trung điểm của AC, BD.

Suy ra OC=OA,OD=OB

Ta có:SA+SC=SO+OA+SO+OC=2SO+(OAOA)=2SO

SB+SD=SO+OB+SO+OD=2SO+(OBOB)=2SO

Do đó, SA+SC=SB+SD

Chứng minh: Nếu SA+SC=SB+SD thì tứ giác ABCD là hình bình hành:

Ta có: SA+SC=SB+SDSASB=SDSCBA=CD

Suy ra, hai vectơ BA và CD cùng hướng và có độ lớn bằng nhau.

Suy ra, AB=CD, AB//CD. Khi đó, tứ giác ABCD là hình bình hành.

Vậy tứ giác ABCD là hình bình hành nếu và chỉ nếu SA+SC=SB+SD

Đánh giá

0

0 đánh giá