Với giá trị nào của a và b thì đa thức x3 + ax2 + 2x + b chia hết cho đa thức x2 + x + 1.

296

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 29) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Với giá trị nào của a và b thì đa thức x3 + ax2 + 2x + b chia hết cho đa thức x2 + x + 1.

Câu 16: Với giá trị nào của a và b thì đa thức x3 + ax2 + 2x + b chia hết cho đa thức x2 + x + 1.

Lời giải:

x3+ax2+2x+b=xx2+x+1+a1x2+x+1+x+ba1xa1=x+a1x2+x+1+x2a+ba+1

Thấy rằng bậc của x(2 – a) + (b – a + 1) nhỏ hơn bậc của x2  + x + 1 nên nó là số dư của x3 + ax2 + 2x + b chia cho x2 + x + 1

Như vậy để thỏa mãn yêu cầu để bài thì: x(2 – a) + (b – a + 1) = 0

Hay a = 2; b = 1

Vây (a; b) = (2; 1).

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá