Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n – 1

301

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 49) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n – 1

Câu 31: Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n – 1.

Lời giải:

Giả sử số nguyên tố là p

Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2

⇒ p có dạng 2n + 1 (k thuộc ℕ, k > 0)

Xét 2 trường hợp:

+ k chẵn (k = 2n) ⇒ p = 2k + 1 = 2.2n + 1 = 4n + 1

+ k lẻ (k = 2n – 1) ⇒ p = 2k + 1 = 2.(2n – 1) + 1 = 4n – 1

Vậy p luôn có dạng 4n + 1 hoặc 4n – 1.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá