Cho tứ diện ABCD. Gọi P, Q lần lượt là trung điểm của AB, CD. Điểm R nằm trên cạnh BC sao cho BR = 2RC

228

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 68) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Cho tứ diện ABCD. Gọi P, Q lần lượt là trung điểm của AB, CD. Điểm R nằm trên cạnh BC sao cho BR = 2RC

Câu 37: Cho tứ diện ABCD. Gọi P, Q lần lượt là trung điểm của AB, CD. Điểm R nằm trên cạnh BC sao cho BR = 2RC. Gọi S là giao điểm của mp (PQR) và AD. Khi đó:

A. SA = 3SD.

B. SA = 2SD.

C. SA = SD.

D. 2SA = 3SD.

Lời giải:

Đáp án đúng là: B

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 68) (ảnh 10)

Trong (BCD) gọi I là giao điểm của RQ và BD

Trong (ABD) gọi S là giao điểm của AD và IP

Khi đó, S = AD ∩ (PQR)

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 68) (ảnh 11)

Gọi J là trung điểm của BR. DO R nằm trên cạnh BC sao cho BR = 2RC

Suy ra BJ = JR = RC

Xét tam giác JCD có R, Q lần lượt là trung điểm của JC, CD

Suy ra RQ là đường trung bình

Do đó RQ // JD, hay RI // JD

Xét tam giác BRI có J là trung điểm của BR và DJ // RI

Suy ra D là trung điểm của BI

Xét tam giác ABI có P, D lần lượt là trung điểm của AD, BI và PI cắt AD tại S

Suy ra S là trọng tâm tam giác ABI

Do đó SA = 2SD

Vậy ta chọn đáp án B.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá