Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm, đường cao AH.

797

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 5) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm, đường cao AH.

Bài 37: Cho tam giác ABC vuông tại A có AB = 3cm; AC = 4cm, đường cao AH.

a) Tính BC,AH;

b) Vẽ (A:AH), vẽ HI vuông góc với AC, HI cắt (A) tại M. Chứng minh: CM là tiếp tuyến của (A)

c) Vẽ đường kính MG của (A). Chứng minh BG là tiếp tuyến của (A)

Lời giải:

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 5) (ảnh 17)

a) Áp dụng định lí Pytago vào   vuông tại A, ta được:

BC2=AB2+AC2BC2=32+42=25

hay BC = 5(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

AHBC=ABACAH5=34=12

hay AH = 2,4(cm)

Vậy: BC = 5cm; AH = 2,4cm

b) Xét (A) có 

AI là một phần đường kính

MH là dây

AIMH tại I(gt)

Do đó: I là trung điểm của MH(Định lí đường kính vuông góc với dây)

Xét ΔCMI vuông tại I và ΔCHI vuông tại I có 

CI chung

IM = IH(I là trung điểm của MH)

Do đó: ΔCMI=ΔCHI (hai cạnh góc vuông)

Suy ra: CM = CH(hai cạnh tương ứng)

Xét ΔCMA và ΔCHA có 

CM = CH(cmt)

CA chung

AM = AH( = R)

Do đó: ΔCMA=ΔCHAccc

Suy ra: CMA^=CHA^ (Hai góc tương ứng)

mà CHA^=900 (gt)

nên  CMA^=900

hay CM là tiếp tuyến của (A)

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá