Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC

377

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 1) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC

Bài 33: Cho tam giác ABC vuông góc tại A,có AB = AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh tam giác AKB = tam giác AKC và AK vuông góc với BC.

b) Từ C kẻ đường thẳng vuông góc với BC, cắt AB tại E. Chứng minh EC song song với AK.

c) Chứng minh CE = CB.

Lời giải:

a) Xét tam giác AKB và AKC có:

AB = AC (giả thiết)

KB = KC (do K là trung điểm của BC)

AK chung

Do đó: AKB = AKC(c.c.c) (đpcm)

AKB^=AKC^

Mà AKB^+AKC^=BKC^=180°

Do đó: AKB^=AKC^=90°

 AKBC (đpcm)

b) Ta thấy: ECBC; AKBC (đã cm ở phần a)

 EC // AK (đpcm)

c) Vì tam giác ABC là tam giác vuông cân tại A nên B^=45°

Tam giác CBE vuông tại C có B^=45° nên tam giác CBE cân tại C. Do đó CE = CB (đpcm)

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá