Cho đa thức: f(x) = x4 + ax3 + bx2 + cx + d ( với a, b, c, d là các số thực)

0.9 K

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 3) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Cho đa thức: f(x) = x4 + ax3 + bx2 + cx + d ( với a, b, c, d là các số thực)

Bài 46: Cho đa thức: f(x) = x4 + ax3 + bx2 + cx + d ( với a, b, c, d là các số thực). Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị của biểu thức: A = f(9) + f(-5)

Lời giải:

Đặt g(x) = f(x) – 10 (bậc 4)

g(1) = 0g(2) = 0g(3) = 0g(x) = (x - 1)(x - 2)(x - 3)(x - m) (m là hằng số)

fx = x - 1x - 2x - 3x - m - 10​f9 = 8 . 7 . 69 - m - 10 = 3369 - m - 10​f-5 = - 6- 7- 8- 5 - m - 10 = 336m + 5 - 10

Vậy A = 336(9 − m) + 336(m + 5) – 20 = 4684

 

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá