Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 7) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.
Chứng minh A = n3 + (n + 1)3 + (n + 2)3 chia hết cho 9 với mọi n ∈ ℕ*.
Câu 27: Chứng minh A = n3 + (n + 1)3 + (n + 2)3 chia hết cho 9 với mọi n ∈ ℕ*.
Lời giải:
A = n3 + (n + 1)3 + (n + 2)3
= n3 + n3 + 3n2 + 3n + 1 + n3 + 6n2 + 12n + 8
= 3n3 + 9n2 + 15n + 9
= 3n2 (n + 1) + 6n ( n + 1) + 9 (n +1)
= 3 (n + 1)(n2 + 2n + 3)
=3(n + 1)[n (n + 2) + 3]
= 3n (n + 1)(n + 2) + 9( n + 1)
Ta có: n; n + 1; n + 2 là 3 số tự nhiên liên tiếp
⇒ 3n(n + 1)(n + 2) ⋮ 9
Mặc khác: 9(n + 1) ⋮ 9
⇒ A = 3n (n + 1)(n + 2) + 9(n + 1) ⋮ 9.
Vậy A = n3 + (n + 1)3 + (n + 2)3 ⋮ 9.
Bài viết cùng bài học: