Chứng minh rằng nếu (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2 với x, y, z

186

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 12) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

 Chứng minh rằng nếu (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2 với x, y, z

Câu 52: Chứng minh rằng nếu (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2 với x, y, z khác 0 thì ax=by=cz.

Lời giải:

Ta có: (a2 + b2 + c2)(x2 + y2 + z2) = (ax + by + cz)2

 a2x2 + a2y2 + a2z2 + b2y2 + b2z2 + c2x2 + c2y2 + c2z2 = a2x2 + b2y2 + c2z2 + 2axby + 2axcz + 2bycz

 a2y2 + a2z2 + b2x2 + b2z2 + c2x+ c2y2 – 2axby – 2axcz – 2bycz = 0

 (a2y2 – 2axby + b2x2) + (a2z2 – 2axcz + c2x2) + (b2z2 – 2bycz + c2y2) = 0

 (ay – by)2 + (az – cx)2 + (bz – cy)2 = 0

Vì (ay – bx)2 ≥ 0; (az – cx)2 ≥ 0; (bz – cy)2 ≥ 0 nên

(ay – by)2 + (az – cx)2 + (bz – cy)2 ≥ 0

Vậy dấu “=” xảy ra khi:

ay=bxaz=cxbz=cyax=byax=czby=cz

ax=by=cz (xyz ≠ 0). (đpcm)

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá