Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 57) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.
Cho tập A = {0; 1; 2; 3; 4; 5}, từ A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau
Câu 35: Cho tập A = {0; 1; 2; 3; 4; 5}, từ A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số khác nhau, trong đó nhất thiết phải có chữ số 0 và 3.
Lời giải:
Số tự nhiên thỏa mãn có dạng với a, b, c, d ∈ A và đôi một khác nhau.
• TH1: d = 0
Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có:
5 . 4 . 3 = 60 (số).
• TH2: d ≠ 0
d có 2 cách chọn là 2, 4
Khi đó có 4 cách chọn a (vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.
Theo quy tắc nhân có: 2 . 4 . 4 . 3 = 96 (số).
Vậy có tất cả: 96 + 60 = 156 (số).
Bài viết cùng bài học: