Phân tích các đa thức sau thành nhân tử: a) x^2 + 4xy – 21y^2; b) 5x^2 + 6xy + y^2

216

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 65) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Phân tích các đa thức sau thành nhân tử: a) x^2 + 4xy – 21y^2; b) 5x^2 + 6xy + y^2

Câu 34: Phân tích các đa thức sau thành nhân tử

a) x2 + 4xy – 21y2

b) 5x2 + 6xy + y2

c) x2 + 2xy – 15y2

d) (x – y)2 + 4(x – y) – 12

e) x2 – 7xy + 10y2

f) x2yz + 5xyz – 14yz

g) x4 + 4x2 – 5

h) x3 – 19x – 30

i) x3 – 5x2 – 14x

j) x3 – 7x – 6

k) x3 – 5x2 – 14

Lời giải:

a) x2 + 4xy – 21y2

x2 + 7xy – 3xy – 21y2

= x(x + 7y) – 3y(x + 7y)

= (x + 7y)(x – 3y)

b) 5x2 + 6xy + y2

5x2 + 5xy + xy + y2

= 5x(x + y) + y(x + y)

= (x + y)(5x + y)

c) x2 + 2xy – 15y2

= x2 + 5xy – 3xy – 15y2

= x(x + 5y) – 3y(x + 5y)

= (x + 5y)(x – 3y)

d) (x – y)2 + 4(x – y) – 12

(x – y)2 + 6 (x – y) –  2(x – y) – 12

= (x – y) (x – y + 6) –  2 (x – y + 6)

= (x – y + 6)(x – y – 2)

e) x2 – 7xy + 10y2

x2 – 2xy – 5xy + 10y2

= x(x  2y) – 5y(x – 2y)

= (x – 2y)(x – 5y)

 f) x2yz + 5xyz – 14yz

x2yz + 7xyz – 2xyz – 14yz

= xyz (x + 7) – 2yz(x + 7)

= yz(x + 7)(x – 2)

g) x4 + 4x2 – 5

= x4 – x+ 5x2 – 5

= x(x2 – 1) + 5 (x2 – 1)

= (x2 – 1) (x2 + 5)

= (x – 1)(x + 1)(x2 + 5)

h) x3 – 19x – 30

= x3 + 5x2 + 6x – 5x– 25x – 30

= x (x2 + 5x + 6) – 5 (x2 + 5x + 6)

= (x2 + 5x + 6) (x – 5)

= (x – 5)(x2 + 2x + 3x + 6)

= (x – 5)[x(x + 2) + 3(x + 2)]

= (x – 5)(x + 2)(x + 3).

i) x3 – 5x2 – 14x

= x(x2 – 5x – 14)

= x(x2 – 7x + 2x – 14)

= x[x(x – 7) + 2 (x – 7)]

= x(x – 7)(x + 2)

j) x3 – 7x – 6

= x3 + 3x+ 2x – 3x– 9x – 6

= x(x+ 3x + 2) – 3(x+ 3x + 2)

= (x – 3)(x+ 3x + 2)

= (x – 3)(x2 + x + 2x + 2)

= (x – 3)[x(x + 1) + 2(x + 1)]

= (x – 3)(x + 1)(x + 2).

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá