Chứng minh rằng n^4 + 2n^3 – n^2 – 2n chia hết cho 24 với mọi số nguyên n

365

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 61) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Chứng minh rằng n^4 + 2n^3 – n^2 – 2n chia hết cho 24 với mọi số nguyên n

Câu 22: Chứng minh rằng n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.

Lời giải:

Ta có: n4 + 2n3 – n2 – 2n

= (n4 + 2n3) – (n2 + 2n)

= n3(n + 2) – n(n + 2)

= (n3 – n)(n + 2)

= n(n2 – 1)(n + 2)

= (n – 1)n(n + 1)(n + 2)

Ta thấy (n – 1)n(n + 1)(n + 2) là tích bốn số nguyên liên tiếp nên sẽ chứa một số chia hết cho 2 và một số chia hết cho 4, từ đó suy ra tích bốn số nguyên liên tiếp chia hết cho 8.

Đồng thời, trong bốn số nguyên liên tiếp luôn chứa tích của ba số nguyên liên tiếp, đồng nghĩa với việc tích bốn số nguyên liên tiếp chia hết cho 3.

Mà 24 = 3.8

Vì vậy tích bốn số nguyên liên tiếp chia hết cho 3.8 = 24.

Vậy n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá