Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 66) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.
Từ các số 1, 2, 3, 4, 5 có thể lập được bao nhiêu số có 3 chữ số khác nhau chia hết cho 3
Câu 37: Từ các số 1, 2, 3, 4, 5 có thể lập được bao nhiêu số có 3 chữ số khác nhau chia hết cho 3.
Lời giải:
Số chia hết cho 3 thì tổng các chữ số của số đó phải chia hết cho 3.
Ta có các bộ ba có tổng chia hết cho 3 là: (1; 2; 3), (1; 2; 6), (1; 3; 5), (1; 5; 6), (2; 3; 4), (2; 4; 6), (3; 4; 5), (4; 5; 6).
Mỗi bộ ba có 3! cách sắp xếp để được một số chia hết cho 3.
Vậy số các số có 3 chữ số khác nhau được lập từ các chữ số: 1; 2; 3; 4; 5; 6 chia hết cho 3 là: 8.3! = 48 (số).
Bài viết cùng bài học: