Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 73) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.
Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6)
Câu 8: Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0;
P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6).
Lời giải:
P(1) = 0; P(3) = 0; P(5) = 0 nên 1 ; 3 ; 5 lần lượt là nghiệm của phương trình nên
P(x) chứa nhân tử (x – 1); (x – 3); (x – 5)
Vì P(x) bậc 4 có hệ số bậc cao nhất là một nên P(x) có dạng:
P(x) = (x – 1)(x – 3)(x – 5)(x – a)
Q = P(–2) + 7P(6)
= (–2 – 1)( –2 – 3)( –2 – 5)( –2 – a) + 7(6 – 1)(6 – 3)(6 – 5)(6 – a)
= 210 + 105a + 7(90 - 15a)
= 210 + 105a + 630 - 105a
= 840
Xem thêm các bài giải Tổng hợp kiến thức môn Toán hay, chi tiết khác:
Câu 1: Tính (72014 + 72012) : 72012.
Câu 2: Tìm chữ số tận cùng của 799.
Câu 3: Tìm x: a) 2(x – 5) – 3(x + 7) = 14;
Câu 4: Tìm x: a) −5(2 – x) + 4(x – 3) = 10x – 15;
Câu 5: Tìm m để bất phương trình x2 – 2(m + 1) + m2 + 2m ≤ 0 có nghiệm với mọi m ∈ [0; 1].
Câu 6: Điền vào chỗ trống: 2,5 phút = …. phút … giây.
Câu 7: Cho đa thức P(x) = x4 – 4x2 + 5 – 2x. Tìm đa thức Q(x) sao cho
Câu 8: Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0;
P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6).
Bài viết cùng bài học: