Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6)

148

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 73) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0; P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6)

Câu 8: Đa thức P(x) bậc 4 có hệ số bậc cao nhất là 1. Biết P(1) = 0; P(3) = 0;

P(5) = 0. Hãy tính giá trị của biểu thức Q = P(−2) + 7P(6).

Lời giải:

P(1) = 0; P(3) = 0; P(5) = 0 nên 1 ; 3 ; 5 lần lượt là nghiệm của phương trình nên

P(x) chứa nhân tử (x – 1); (x – 3); (x – 5)

Vì P(x) bậc 4 có hệ số bậc cao nhất là một nên P(x) có dạng:

P(x) = (x – 1)(x – 3)(x – 5)(x – a)

Q = P(–2) + 7P(6)

= (–2 – 1)( –2 – 3)( –2 – 5)( –2 – a) + 7(6 – 1)(6 – 3)(6 – 5)(6 – a)

= 210 + 105a + 7(90 - 15a)

= 210 + 105a + 630 - 105a

= 840

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá