Chứng minh sin 3x = 3sin x – 4sin3x, cos 3x = 4cos3x – 3cos x

536

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 26) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Chứng minh sin 3x = 3sin x – 4sin3x, cos 3x = 4cos3x – 3cos x

Câu 14: Chứng minh sin 3x = 3sin x – 4sin3x, cos 3x = 4cos3x – 3cos x

Lời giải:

Ta có: sin 3x = sin (2x + x) = sin 2x . cos x + cos 2x . sin x

= (2sin x. cos x) . cos x + (1 – 2sin2x) . sin x

= 2sin x. cos2 x + sin x – 2 sin3x

= 2sin x . (1 – sin2x) + sin x – 2 sin3x

= 2sin x – 2 sin3x + sin x – 2 sin3x

3sin x – 4sin3x

Vậy sin 3x = 3sin x – 4sin3x

Ta có: cos 3x = cos (2x + x) = cos 2x . cos x – sin 2x . sin x

= (–1 + 2cos2x) . cos x – 2cos x . sin x . sin x

= – cos x + 2cos3 x – 2cos x . sin2 x

= – cos x + 2cos3 x – 2cos x . (1 – cos2 x)

= – cos x + 2cos3 x – 2cos x + 2cos3 x

4cos3x – 3cos x

Vậy cos 3x = 4cos3x – 3cos x .

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá