Chứng minh hằng đẳng thức: (a + b + c)3 = a3 + b3 + c3 + 3(a + b)(b + c)(c + a).

272

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 28) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Chứng minh hằng đẳng thức: (a + b + c)3 = a3 + b3 + c3 + 3(a + b)(b + c)(c + a).

Câu 1: Chứng minh hằng đẳng thức:

(a + b + c)3 = a3 + b3 + c3 + 3(a + b)(b + c)(c + a).

Lời giải:

Biến đổi vế trái:

(a + b + c)3 = [(a + b) + c]3

= (a + b)3 + 3(a + b)2c + 3(a +b)c2 + c3

= a3 + 3a2b + 3ab2 + b3 + 3(a2 + 2ab + b2)c + 3ac2 + 3bc2 + c3

= a3 + 3a2b + 3ab2 + b3 + 3a2c + 6abc + 3b2c + 3ac2 + 3bc2 + c3

= a3 + b3 + c3 + 3a2b + 3ab2 + 3a2c + 6abc + 3b2c + 3ac2 + 3bc2

= a3 + b3 + c3 + (3a2b + 3ab2) + (3a2c + 3abc) + (3abc + 3bc2) + (3ac2 + 3bc2)

= a3 + b3 + c3 + 3ab(a + b) + 3ac(a + b) + 3bc(a + c) + 3c2(a + b)

= a3 + b3 + c3 + (a + b)(3ab + 3ac + 3bc + 3c2)

= a3 + b3 + c3 + (a + b)[(3ab + 3ac) + (3bc + 3c2)]

= a3 + b3 + c3 + (a + b)[3a(b + c) + 3c(b + c)]

= a3 + b3 + c3 + 3(a + b)(b + c)(a + c) (đpcm)

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá