Chứng minh rẳng A = (5n – 2)^2 – (2n – 5)^2 chia hết cho 21 với mọi giá trị nguyên n

183

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 51) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Chứng minh rẳng A = (5n – 2)^2 – (2n – 5)^2 chia hết cho 21 với mọi giá trị nguyên n

Câu 2: Chứng minh rẳng A = (5n – 2)2 – (2n – 5)2 chia hết cho 21 với mọi giá trị nguyên n.

Lời giải:

A = (5n – 2)2 – (2n – 5)2

A = (5n – 2 – 2n + 5)(5n – 2 + 2n – 5)

A = (3n + 3)(7n – 7)

A = 3 . 7 . (n + 1)(n – 1)

A = 21 . (n + 1)(n – 1)

Ta thấy: 21 chia hết cho 7 nên 21 . (n + 1)(n – 1) chia hết cho 7.

Vậy A chia hết cho 7 với mọi n.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá