Chứng minh các biểu thức sau dương: x2 – 8x + 20

154

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 46) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Chứng minh các biểu thức sau dương: x2 – 8x + 20

Câu 8: Chứng minh các biểu thức sau dương:

a) x2 – 8x + 20.

b) 4x2 – 12x + 11.

c) x2 – x + 1.

d) x2 – 2x + y2 + 4y + 6.

Lời giải:

a) x2 – 8x + 20 = (x2 – 8x + 16) + 4 = (x + 4)2 + 4

Vì (x + 4)2 ≥ 0 với mọi x

Nên (x + 4)2 + 4 > 0 với mọi x

Vậy biểu thức x2 – 8x + 20 dương.

b) 4x2 – 12x + 11 = (4x2 – 12x + 9) + 2 = (2x – 3)2 + 2

Vì (2x – 3)2 ≥ 0 với mọi x

Nên (2x – 3)2 + 2 > 0 với mọi x

Vậy biểu thức 4x2 – 12x + 11 dương.

c) x2x+1=x22.x.12+14+34=x122+34

Vì x1220  với mọi x

Nên x122+34>0  với mọi x

Vậy biểu thức x2 – x + 1 dương.

d) x2 – 2x + y2 + 4y + 6

= (x2 – 2x + 1) + (y2 + 4y + 4) + 1

= (x – 1)2 + (y + 2)2 + 1

Vì (x – 1)2 ≥ 0 với mọi x

(y + 2)2 ≥ 0 với mọi y

Nên (x – 1)2 + (y + 2)2 + 1 > 0 với mọi x, y

Vậy biểu thức x2 – 2x + y2 + 4y + 6 dương.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá