Tìm tất cả các số nguyên x, y, z thỏa mãn 3x^2 + 6y^2 + 2z^2 + 3y^2z^2 – 18x = 6

282

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 69) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Tìm tất cả các số nguyên x, y, z thỏa mãn 3x^2 + 6y^2 + 2z^2 + 3y^2z^2 – 18x = 6

Câu 2: Tìm tất cả các số nguyên x, y, z thỏa mãn 3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6.

Lời giải:

Ta có:

3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6

 (3x2 – 18x + 27) + 6y2 + 2z2 + 3y2z2 = 6 + 27

 3(x – 3)2 + 6y2 + 2z2 + 3y2z2 = 33                                 (1)

Vì x, y, z nguyên nên z2  3 và 2z2 ≤ 33

Hay |z| ≤ 3

Mà z nguyên

Suy ra z = 0 hoặc z = 3

+) TH1: z = 0

(1)   3(x – 3)2 + 6y2 = 33       

  (x – 3)2 + 2y2 = 11

Suy ra 2y2 ≤ 11

Do đó |y| ≤ 2

y=0y=1

x32=11x32+2=11

  (x – 3)2  + 2 = 11 (vì x nguyên)

  (x – 3)2  = 9 x3=3x3=3x=6x=0

+) TH1: z = 3

(1)  3(x – 3)2 + 6y2 + 2 . 32 + 3y2 . 32 = 33                    

  3(x – 3)2 + 33y2 + 18 = 33

  (x – 3)2 + 11y2 = 5

Suy ra 11y2 ≤ 5

Do đó y = 0

Khi đó  (x – 3)2  = 5 nên không tìm được giá trị x nguyên thỏa mãn phương trình

Vậy phương trình đã cho có nghiệm nguyên (x, y, z) là: (0; 1; 0), (0; –1; 0), (6; 1; 0), (6; –1; 0).

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá