Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 69) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.
Tìm tất cả các số nguyên x, y, z thỏa mãn 3x^2 + 6y^2 + 2z^2 + 3y^2z^2 – 18x = 6
Câu 2: Tìm tất cả các số nguyên x, y, z thỏa mãn 3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6.
Lời giải:
Ta có:
3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6
⇔ (3x2 – 18x + 27) + 6y2 + 2z2 + 3y2z2 = 6 + 27
⇔ 3(x – 3)2 + 6y2 + 2z2 + 3y2z2 = 33 (1)
Vì x, y, z nguyên nên z2 ⋮ 3 và 2z2 ≤ 33
Hay |z| ≤ 3
Mà z nguyên
Suy ra z = 0 hoặc z = 3
+) TH1: z = 0
(1) ⇔ 3(x – 3)2 + 6y2 = 33
⇔ (x – 3)2 + 2y2 = 11
Suy ra 2y2 ≤ 11
Do đó |y| ≤ 2
⇔ (x – 3)2 + 2 = 11 (vì x nguyên)
⇔ (x – 3)2 = 9
+) TH1: z = 3
(1) ⇔ 3(x – 3)2 + 6y2 + 2 . 32 + 3y2 . 32 = 33
⇔ 3(x – 3)2 + 33y2 + 18 = 33
⇔ (x – 3)2 + 11y2 = 5
Suy ra 11y2 ≤ 5
Do đó y = 0
Khi đó (x – 3)2 = 5 nên không tìm được giá trị x nguyên thỏa mãn phương trình
Vậy phương trình đã cho có nghiệm nguyên (x, y, z) là: (0; 1; 0), (0; –1; 0), (6; 1; 0), (6; –1; 0).
Xem thêm các bài giải Tổng hợp kiến thức môn Toán hay, chi tiết khác:
Câu 2: Tìm tất cả các số nguyên x, y, z thỏa mãn 3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6.
Câu 3: Cho A = (5; 7] và B = [m; m + 3). Tìm m để:
Câu 4: Chứng minh: (–a – b)2 = (a + b)2.
Câu 5: Số trung bình cộng của hai số bằng 9. Biết một trong hai số đó bằng 12. Tìm số kia.
Câu 6: Cho 3 tập hợp A = (–∞; 0), B = (1; +∞), C = (0; 1). Tìm (A ∪ B ) ∩ C.
Câu 7: Cho a = [m; m + 3] với m là tham số và b = (0; 2). Tìm m để b là con của a.
Câu 9: Cho 3 chữ số 1; 2; 3. Lập được tất cả bao nhiêu số tự nhiên có 3 chữ số?
Câu 10: Cho biết tổng của sáu số là 42, hãy tính trung bình cộng của sáu số đó.
Câu 11: Cho hàm số y = (m – 2)x + 2m + 1 (m là tham số)
a) Với giá trị nào của m thì hàm số đồng biến?
Câu 12: Xét tính tuần hoàn và chu kỳ của y = cos2x – 1.
Câu 13: Cho mệnh đề: “ ∀ x ∈ ℝ, x2 + 3x + 5 > 0”. Mệnh đề phủ định của mệnh đề trên là:
Câu 14: Chứng minh: B = n4 + 64 không phải là số nguyên tố với mọi n thuộc ℤ.
Bài viết cùng bài học: