Chứng minh: B = n^4 + 64 không phải là số nguyên tố với mọi n thuộc ℤ

144

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 69) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Chứng minh: B = n^4 + 64 không phải là số nguyên tố với mọi n thuộc ℤ

Câu 14: Chứng minh: B = n4 + 64 không phải là số nguyên tố với mọi n thuộc ℤ.

Lời giải:

Ta có: B = n4 + 64 = n4 + 16n2 + 64 – 16n2

= (n2 + 8)2 – (4n)2 = (n2 – 4n + 8)(n2 + 4n + 8)

Suy ra B = n4 + 64 không phải là số nguyên tố với mọi n thuộc Z.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá