Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 76) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.
Ba khối 6, 7 và 8 lần lượt có 300 học sinh, 276 học sinh và 252 học sinh xếp thành các hàng dọc để diễu hành
Câu 2: Ba khối 6, 7 và 8 lần lượt có 300 học sinh, 276 học sinh và 252 học sinh xếp thành các hàng dọc để diễu hành sao cho số hàng dọc của mỗi khối là như nhau. Có thể xếp nhiều nhất thành mấy hàng dọc để mỗi khối đều không có ai lẻ hàng? Khi đó ở mỗi hàng dọc của mỗi khối có bao nhiêu học sinh?
Lời giải:
Do số hàng dọc của mỗi khối là như nhau nên số hàng dọc sẽ là ước chung của 300, 276, 252
Hơn nữa cần xếp nhiều nhất thành các hàng dọc để mỗi khối đều không có ai lẻ hàng nên số hàng là ƯCLN(300, 276, 252)
Ta có: 300 = 22 . 3 . 52
276 = 22 . 3 . 23
252 = 22 . 32 . 7
ƯCLN(300, 276, 252) = 22 . 3 = 12
Vậy có thể xếp nhiều nhất học sinh của ba khối 6, 7 và 8 thành 12 hàng.
Khi đó ở mỗi hàng:
+) Khối 6 có 300 : 12 = 25 (học sinh)
+) Khối 7 có 276 : 12 = 23 (học sinh)
+) Khối 8 có 252 : 12 = 21 (học sinh)
Xem thêm các bài giải Tổng hợp kiến thức môn Toán hay, chi tiết khác:
Câu 1: Tìm số tự nhiên n thoả mãn 2.22 + 3.23 + 4.24 + ... + n.2n = 2n + 11
Câu 5: Cho x + y = 3. Tính giá trị biểu thức: A = x3 + x2y – 3x2 + xy + y2 – 4y – x + 3.
Câu 7: Tìm cạnh của hình vuông nếu cạnh của hình vuông giảm đi 7 m thì diện tích giảm đi 84 m2.
Câu 8: Tìm giá trị lớn nhất của biểu thức A = –2x2 + 12x – 11.
Câu 9: a) Tìm giá trị nhỏ nhất của biểu thức A = 2x2 + 12x + 11.
Câu 10: a) Nêu cách xác định hình chiếu của một điểm A lên đường thẳng d.
Câu 11: Cách vẽ hình chiếu của một điểm trên một cạnh.
Câu 12: Tìm số nguyên dương n, biết: 121 ≥ 11n ≥ 1.
Câu 13: Thực hiện phép tính: 56 : 54 + 23 . 22 – 12017.
Câu 14: Liệt kê các phần tử của tập hợp sau: a) A = {(x; x2) | x ∈ {–1; 0; 1}}.
CÔNG TY TNHH ĐẦU TƯ VÀ DỊCH VỤ GIÁO DỤC VIETJACK
- Người đại diện: Nguyễn Thanh Tuyền
- Số giấy chứng nhận đăng ký kinh doanh: 0108307822, ngày cấp: 04/06/2018, nơi cấp: Sở Kế hoạch và Đầu tư thành phố Hà Nội.
2021 © All Rights Reserved.