Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 13) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.
Số nghiệm của phương trình cos 2x + 3sin x − 2 = 0 trên khoảng (0; 20π) là bao nhiêu?
Câu 16: Số nghiệm của phương trình cos 2x + 3sin x − 2 = 0 trên khoảng (0; 20π) là bao nhiêu?
Lời giải:
cos 2x + 3sin x − 2 = 0
<=> 1 − 2sin2 x + 3sin x − 2 = 0
<=> − 2sin2 x + 3sin x − 1 = 0
<=> 2sin2 x − 3sin x + 1 = 0
<=> (2sin x − 1)(sin x − 1) = 0
+) TH1: sin x = 1
Với x (0; 20π)
=> 0 k 9 (k ℤ)
Vậy TH1 cho 10 nghiệm x thỏa mãn
+) TH2:
Với x (0; 20π)
Vậy TH2 cho 20 nghiệm x thỏa mãn.
Vậy có 30 nghiệm của x thỏa mãn phương trình.
Xem thêm các bài giải Tổng hợp kiến thức môn Toán hay, chi tiết khác:
Câu 1: Cho parabol và hai điểm A, B thuộc (P) có hoành độ lần lượt là −1; 2. Đường thẳng (d) có phương trình y = mx + n.
Câu 2: Cho parabol và hai điểm A, B thuộc (P) có hoành độ lần lượt là −1; 2. Đường thẳng (d) có phương trình y = mx + n.
Câu 3: Cho tan a + cot a = m. Tìm m để tan2 a + cot2 a = 7.
Câu 4: Cho tan a + cot a = m. Tính tan3 a + cot3 a theo m.
Câu 5: Cho biểu thức. Tìm điều kiện của x để A có nghĩa.
Câu 6: Cho biểu thức. Tìm x để
Câu 7: Tìm số có 3 chữ số, biết rằng nếu bỏ chữ số 0 ở tận cùng bên phải số đó ta được số mới mà hiệu của số mới và số đã cho bằng 135.
Câu 8: Tìm số tự nhiên có 3 chữ số biết rằng nếu viết thêm 1 chữ số 0 vào giữa chữ số hàng trăm và hàng chục của số đó ta được số mới gấp 6 lần số phải tìm.
Câu 9: Giải phương trình
Câu 10: Chứng minh bất đẳng thức: a2 + b2 + c2 ≥ ab + bc + ca.
Câu 11: Cho a2 + b2 + c2 = ab + bc + ca. Chứng minh a = b = c.
Câu 12: Cho hình thoi ABCD, có . Gọi E, F, G, H lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh 5 điểm E, F, G, H, B, D cùng thuộc một đường tròn
Câu 13: Cho hình thoi ABCD có góc A = 60°. Gọi E, P, G, H lần lượt của trung điểm của AB, BC, CD, DA. Chứng minh 6 điểm E, P, G, H, B, D cùng thuộc 1 đường tròn
Câu 14: Cho tam giác ABC vuông cân đỉnh A. Qua A kẻ đường thẳng d cắt BC. Vẽ BM, CN cùng vuông góc với d. Chứng minh: ∆BAM = ∆CAN.
Câu 15: Cho tam giác ABC vuông tại A có AB = AC. Qua A kẻ đường thẳng d (B, C nằm cùng phía đối với d). Kẻ BM và CN vuông góc với d. Chứng minh rằng: