Cho đa thức: f(x) = x4 + ax3 + bx2 + cx + d ( với a, b, c, d là các số thực).

239

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 22) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Cho đa thức: f(x) = x4 + ax3 + bx2 + cx + d ( với a, b, c, d là các số thực).

Câu 6: Cho đa thức: f(x) = x4 + ax3 + bx2 + cx + d ( với a, b, c, d là các số thực). Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị của biểu thức: A = f(9) + f(-5)

Lời giải:

Đặt g(x) = f(x) – 10 (bậc 4)

g(1) = 0g(2) = 0g(3) = 0g(x) = (x - 1)(x - 2)(x - 3)(x - m) (m là hằng số)

fx = x - 1x - 2x - 3x - m - 10​f9 = 8 . 7 . 69 - m - 10 = 3369 - m - 10​f-5 = - 6- 7- 8- 5 - m - 10 = 336m + 5 - 10

Vậy A = 336(9 − m) + 336(m + 5) – 20 = 4684

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá