Với mỗi số nguyên dương n, kí hiệu Sn là tổng của n số nguyên tố đầu tiên

171

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 45) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Với mỗi số nguyên dương n, kí hiệu Sn là tổng của n số nguyên tố đầu tiên

Câu 14: Với mỗi số nguyên dương n, kí hiệu Slà tổng của n số nguyên tố đầu tiên

(S1 = 2; S2 = 2 + 3 = 5; S3 = 2 + 3 + 5 = 10; ...).

Chứng minh rằng trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.

Lời giải:

Gọi pn là số nguyên tố thứ n

Giả sử tồn tại m mà Sm-1 = k2; Sm = l2; k, l ∈ ℕ*

Vì S2 = 5, S3 = 10, S4 = 17

Suy ra m > 4

Ta có: Pm = Sm – Sm-1 = l2 – k2 = (l – k)(l + k)

Vì pm là số nguyên tố và k + l > 1 nên lk=1l+k=pm

Suy ra pm=2l1=2Sm1

Suy ra Sm=pm+122                          (1)

Do m > 4 nên

Sm ≤ (1 + 3 + 5 + 7 + ... + pm) + 2 – 1 – 9

Sm1202+2212+3222+...+pm+122pm1228

Smpm+1228<pm+122 (mâu thuẫn với (1))

Vậy trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá