Không thực hiện tính tổng, chứng minh rằng A = 2 + 2^2 + 2^3 + … + 2^20 chia hết cho 5

134

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 97) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Không thực hiện tính tổng, chứng minh rằng A = 2 + 2^2 + 2^3 + … + 2^20 chia hết cho 5

Câu 11: Không thực hiện tính tổng, chứng minh rằng A = 2 + 22 + 23 + … + 220 chia hết cho 5.

Lời giải:

A = 2 + 22 + 23 + … + 220

A = (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + … + (217 + 218 + 219 + 220)

A = 2(1 + 2 + 22 + 23) + 25(1 + 2 + 22 + 23) + … + 217(1 + 2 + 22 + 23)

A = (1 + 2 + 22 + 23)(2 + 25 + … + 217)

A = 15.(2 + 25 + … + 217)

Vì 15 chia hết cho 5 nên 15.(2 + 25 + … + 217) chia hết cho 5.

Vậy A chia hết cho 5.

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá