Cho tam giác ABC vuông tại A. Trên cạnh AC lấy M: 2MC < AC và M không trùng với C

467

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 2) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Cho tam giác ABC vuông tại A. Trên cạnh AC lấy M: 2MC < AC và M không trùng với C

Bài 3: Cho tam giác ABC vuông tại A. Trên cạnh AC lấy M: 2MC < AC và M không trùng với C, vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:

a) Tứ giác ABCD nội tiếp.

b) CA là phân giác góc SCB.

Lời giải:

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 2) (ảnh 1)

a) Tứ giác ABCD nội tiếp.

Do MC là đường kính của đường tròn (O), D thuộc (O) nên: MDC = 90BAC

Suy ra D và A cùng nhìn BC dưới một góc vuông

 Tứ giác ABCD nội tiếp đường tròn đường kính BC.

b) CA là phân giác góc SCB.

Do ABCD là tứ giác nội tiếp nên: ^ADB=^ACB (cùng chắn cung AB).

Xét (O) ta có: ^ACS=^BDA (hai góc nội tiếp cùng chắn cung MS)

⇒ ∠ACB = ∠ ACS ( = BDA).

Vậy CA là phân giác của SCB   (đpcm).

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá