Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn

427

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 7) hay nhất được biên soạn và chọn lọc giúp bạn ôn luyện và đạt kết quả cao trong bài thi môn Toán.

Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn

Câu 12: Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB.

Lời giải:

Top 1000 câu hỏi thường gặp môn Toán có đáp án (phần 7) (ảnh 4)

Vì AB, AC là hai tiếp tuyến của (O) lần lượt tại B và C. Theo tính chất của hai tiếp tuyến cắt nhau ta có: AB = AC.

Vì DB, DM là hai tiếp tuyến của (O) lần lượt tại B và M. Theo tính chất của hai tiếp tuyến cắt nhau ta có: DB = DM.

Vì EM, EC là hai tiếp tuyến của (O) lần lượt tại M và C. Theo tính chất của hai tiếp tuyến cắt nhau ta có: EM = EC.

Chu vi tam giác ADE là:

AD + DE + EA

= AD + (DM + ME) + EA

= (AD + DM) + (ME + EA)

= (AD + DB) + (EC + EA) (do DB = DM, EM = EC)

= AB + AC = 2AB (do AB = AC).

Từ khóa :
Giải bài tập
Đánh giá

0

0 đánh giá